HOMEWORK #2 – SOLUTIONS Page 106 2) a) 2 + 0 = 2 c) 0(1.5)=0 4) e) b) d) 2 3 ⋅ 2 = 16 f) 1 + DNE = DNE ‐1 / 0 = DNE 3+1 = 2 2x 2 + 1 9 3 lim 2 = = x→2 x + 6x − 4 12 4 x (x − 4) x 2 − 4x x 4 = lim = lim = 14) lim 2 x→4 x − 3x − 4 x→4 ( x − 4 ) ( x + 1) x→4 x + 1 5 ( ) ( x − 1) x 2 + x + 1 x3 − 1 x2 + x + 1 3 = lim = lim = 18) lim 2 x→1 x − 1 x→1 x→1 x +1 2 ( x − 1) ( x + 1) 26) ⎛ t2 + t − t ⎞ 1 ⎞ t2 ⎛1 lim ⎜ − 2 ⎟ = lim ⎜ 2 = ⎟ = lim t→0 ⎝ t t + t ⎠ t→0 ⎝ t t + t ⎠ t→0 t ( t + 1) ( lim t→0 30) 1 =1 t +1 ) x2 + 9 − 5 = lim x→−4 x+4 lim x→−4 x 2 + 9 − 25 ( lim (x + 4) x + 9 + 5 ( x − 4 )( x + 4 ) lim x→−4 ( x + 4 ) x2 + 9 + 5 x→−4 x2 + 9 − 5 (x + 4) ) = lim ) = lim x→−4 x→−4 ( )( x2 + 9 + 5 x2 + 9 + 5 lim xe π sin x ) (x + 4) ( x +9 +5 2 x−4 x2 + 9 + 5 4 5 =− = 0 by the Squeeze Theorem. 2 ( x + 6) 2x + 12 2x + 12 = lim+ = lim+ =2 x→−6 x + 6 x→−6 x→−6 x+6 x+6 lim lim− x→−6 2 ( x + 6) 2x + 12 = lim− = −2 − ( x + 6 ) x→−6 − ( x + 6 ) 2x + 12 DNE x→−6 x + 6 ∴ lim 52) )= x 2 − 16 π sin π −1 −1 ≤ sin ≤ 1 ⇒ e ≤ e x ≤ e1 ⇒ x π sin 1 x ⋅ ≤ x ⋅e x ≤ x ⋅e e x lim+ = 0 = lim+ x ⋅ e ⇒ x→0 x→0 e x→0 + 40) 2 ( 38) ( ) = v2 lim L0 1− 2 = L0 1− 1 = 0 v→c − c v must be less than c because velocity cannot exceed the speed of light. 56) lim x→0 f ( x) = 5 ⇒ f ( x ) = 5x 2 2 x a) lim f ( x ) = lim 5x 2 = 5 ⋅ 0 = 0 b) f ( x) 5x 2 lim = lim = lim 5x = 5 ⋅ 0 = 0 x→0 x→0 x→0 x x lim 6−x −2 = 3− x −1 60) x→2 ( lim ( x→0 x→0 ) ( 6 − x + 2 ) ( 3 − x + 1) = 6 − x + 2 ) ( 3 − x + 1) ( 3 − x − 1) ( 6 − x − 4 ) ( 3 − x + 1) ( 2 − x ) ( 3 − x + 1) lim = lim = ( 6 − x + 2 ) ( 3 − x − 1) ( 2 − x ) ( 6 − x + 2 ) 6−x −2 x→2 x→2 2 1 = 4 2 x→2
© Copyright 2026 Paperzz