A Transition Matrix Representation of the
Algorithmic Statistical Process Control Procedure
with Bounded Adjustments and Monitoring
Changsoon Park
Department of Statistics
Chung-Ang University
Seoul, Korea
Algorithmic Statistical Process Control (ASPC)
- Vander Wiel, Tucker, Faltin, Doganaksoy(1992)
- Integrated approach to quality improvement
- An approach that realizes quality gains through process adjustment &
process monitoring
Process adjustment ;
manipulate the compensating variables of a process to achieve the
desired process behavior ( e.g., output close to a target )
- adjustment scheme ( feedforward, feedback )
( e.g. repeated adjustment, bounded adjustment )
Process mornitoring ;
monitor a process so as to detect and remove root causes of variability
- control chart ( e.g. Shewhart, CUSUM, EWMA )
Changsoon Park
1
We consider
Disturbance Model – IMA(0,1,1) with a step shift
Z t Z t 1 at at 1 a I{U } (t )
IMA(0,1,1)
Step shift
due to noise
due to special cause
~ Pr(U t ) (1 p)t 1 p,
t 1, 2,
ASPC procedure – Bounded Adjustments & EWMA Monitoring
Derive properties by a transition matrix representation
Changsoon Park
2
IMA(0,1,1) with A Step Shift
6
5
4
3
2
1
0
0
5
10
15
20
25
30
35
40
45
50
-1
-2
-3
-4
Z t Z t 1 at 0.3at 1 3I{30} (t )
Changsoon Park
3
Control Procedure
1. Bounded Adjustments
Zˆ t 1 : one-step ahead forecast
Zˆt 1 Zt Zˆt ,
1
Yt : total output compensation
Ot Z t Yt : observed deviation
Ft Zˆt 1 Yt : predicted deviation
If Ft L , then adjust the process (Yt Zˆt 1 )
Changsoon Park
4
A(1), A(2), : adjustment time
yt ( Yt Yt 1 ) : one-step output compensation
◦ observed deviation :
Ot Ot 1 at at 1 a I{U } (t ) y A(t )1 I{ A(t )1} (t )
t 1
◦ Recurrence relation
Ot Ot 1 at at 1 a I{U } (t )
Ft Ot Ft 1
If Ft L , adjust by Ft , i.e.
Restart with
Ot Ot Ft
Ft 0
Changsoon Park
5
Bounded Adjustments
6
5
4
3
L
2
1
A(1)
A( 4 )
0
0
5
10
15 A( 2)
20
25
30A(3)
35
40
45
50
-1
L
-2
-3
-4
O
계열1
t
Changsoon Park
F
계열2
t
Y
계열3
t
6
◦ Random shock representation of Ot and Ft
r (t ) : adjustment time immediately before t
N 0 : no. of adjustments before a special cause occurs
t 1
at a j , t U
j r ( t ) 1
t 1
Ot at a j a , U t A( N 0 1)
j r ( t ) 1
t 1
a
a j a r (t ) U 1 ,
A( N 0 1) t
t
j r ( t ) 1
t
a j , t U
j r (t t ) 1
Ft a j a (1 t U 1 ) , U t A( N 0 1)
j r (t t ) 1
r ( t ) U 1
t r (t )
a
(
1
), A( N 0 1) t
a
j
j r (t ) 1
Changsoon Park
7
2. EWMA Monitoring
et Ot Ft 1 : Forecast error
EWMA statistic : Et ret (1 r ) Et 1 ,
0 r 1
If Et c , signal
When a signal is false, restart with Et 1 0
at , t U
et
t U
a
, U t
a
t
( Et , Ft ) : Bivariate process control statistic
adjustment, true signal : action
A(1), A(2), : action time
Changsoon Park
8
EWMA Monitoring
6
5
4
3
2
1
0
0
5
10
15
25
20
30
35
40
45
50
-1
-2
-3
-4
et
Changsoon Park
Et
9
Transition Matrix Representation
Calculate properties of ASPC procedure
(no. of false signals, no. of adjustments, sum of squared deviations)
1. A cycle
start
special cause
A( 2 )
A(1)
A( N 0 )
signal
A( N 0 1) A( N 0 2)
period Ⅱ
period Ⅰ
end
period Ⅲ
special cause signal
start
A(1)
A( 2 )
A( N 0 1)
A( N 0 )
end
period Ⅰ
: adjustment
Changsoon Park
: false signal
period Ⅱ
: true signal
10
2. Representation of ( Et , Ft ) by a finite states
- use of Gaussian quadrature points and weights
2.1 Partition of (c, c) : no signal interval
points : xi , weights : vi , i 1, 2, , h (odd), (h h 1)
(c, c) weight
c
0
c
Changsoon Park
subinterval
points
vh
vh 1
Ih
I h 1
xh
xh 1
vh / 2
I h / 2
xh / 2
v2
v1
I2
I1
(,c] [c, )
x2
x1
xh
11
2.2 Partition of ( L, L ) : no adjustment interval
points : y j , weights : w j , j 1, 2,, g (odd), ( g g 1)
( L, L ) weight
L
wg
wg 1
0
L
Changsoon Park
wg / 2
w2
w1
subinterval
points
Jg
J g 1
yg
y g 1
J g/ 2
yg/ 2
J2
J1
(, L] [ L, )
y2
y1
yg
12
3. Transition Matrix Representation in each period
◦ bivariate process
states
( xi , y j )
( Et , Ft )
◦ Transition matrix
g h
i 1, 2,, h
j 1, 2,, g
g h
Pt (ij , kl)
Pt (ij , kl) Pr[( Et 1 , Ft 1 ) ( xk , yl ) ( Et , Ft ) ( xi , y j )]
i 1, 2,, h
,
j 1, 2,, g
Changsoon Park
k 1, 2,, h
l 1, 2,, g
13
◦ Partition the whole states into classes according to the action
Denote each class by a character
“We are interested in each action, not in each state.”
“We can identify the classes involved by the dimension of the matrix
or vector.”
1a
0a
: one vector of dimension a
: zero vector of dimension a
1a ('class') : vector of dimension a whose elements corresponding
to ‘class’ are all 1’s and all the rests are 0 .
1a (state) : vector of dimension a whose element corresponding
to the state is 1 and all the rests are 0 .
Changsoon Park
14
3.1 Period Ⅰ
◦ classes
class
no action
state
no. of states
‘ n’
{( xi , y j )}
i 1,2,, h
j 1,2, , g
gh
‘ a’
{( xi , y g )}
i 1,2,, h
h
{( xh , y j )}
j 1,2, , g
g
adjustment only
false signal only
‘ f’
false signal & adjustment
‘1’
{( xh , y g )}
1
‘*’
whole states
g h
‘ nf ’
‘ n’ ‘ f ’
gh
‘ a1’
‘ a’ ‘ 1’
h
‘ f 1’
‘ f ’ ‘ 1’
g
Changsoon Park
15
◦ decomposition of the total transition matrix
‘ n’
‘ n’ Q nI , n
Q*,*
I
Changsoon Park
‘ a’ Q aI , n
‘ f ’ Q If , n
1, n
‘1’ Q I
‘ a’
‘ f’
‘1’
Q nI ,a
Q nI , f
Q aI ,a
Q aI , f
Q If ,a
Q If , f
Q1I,a
Q1I, f
Q nI ,1
a ,1
QI
Q If ,1
Q1I,1
16
◦ Define transition matrix until U
- rather than only in period Ⅰ
- state of a special cause (occurrence or not) is added
nsc
nsc (1 p )Q*,*
I
PI
sc
0g h
sc
p 1 g h
1
(1 p) Q*,*
: transient state transition matrix
I
Occurrence of a special cause : absorbing state
(there is no absorbing state in period Ⅰ)
Changsoon Park
17
◦ s I : starting state vector of period Ⅰ
s I 1gh ( xh / 2 , yg / 2 ) 1gh (0,0)
TF : time that a false signal occurs
' f 1' false signal
t 1
Pr(TF t ) sI [(1 p)Q*,*
[(1 p)Q*,I f 1 ]1g
I ]
t
sI [(1 p)Q*,*
I ] 1 g h (' f 1')
◦ Average no. of false signal
E ( F ) 1 Pr(TF t )
t 1
t
sI [(1 p )Q*,*
I ] 1 g h (' f 1')
t 1
*
I
I
*
I
I
s R [(1 p )Q*,*
I ] 1 g h (' f 1')
s R [(1 p )Q*,I f 1 ]1 g
1
where R*I [I (1 p)Q*,*
I ]
Changsoon Park
18
T AI : time that an adjustment occurs
'a1' adjustment
t 1
*,a1
Pr(TAI t ) sI [(1 p)Q*,*
I ] [(1 p )Q I ]1h
t
sI [(1 p)Q*,*
]
1g h('a1')
I
◦ Average no. of adjustments
E ( AI ) 1 Pr(TAI t )
t 1
sI R *I [(1 p)Q*,*
I ] 1 g h ('a1')
sI R *I [(1 p)Q*,I a1 ]1h
Changsoon Park
19
◦ H I ( xi ) : adjustment interval length given Et xi , i 1,2,, h
Pr( H I ( xi ) t ) 1gh( xi , y g / 2 ) [(1 p)Q nfI ,nf ]t 1[(1 p)Q nfI ,a1 ]1h
E[ H I ( xi )] t Pr(H I ( xi ) t )
t 1
1gh( xi , y g / 2 ) [R nfI ]2 [(1 p)Q nfI ,a1 ]1h
where R nfI [I (1 p)Q nfI ,nf ]1
HI ( H I ( x1 ), H I ( x2 ), , H I ( xh ))
◦ S I ( xi ) : SSD in an action(adjustment) interval given Et xi
t (t 1) 2 2
SSD H ( x ) t { t
} a
I
i
2
t (t 1) 2 2
E[ S I ( xi )] { t
} a Pr( H I ( xi ) t )
2
t 1
a2 1gh( xi , y g / 2 ) [R nfI ]2{Ι 2 R nfI [(1 p)Q nfI ,nf ]}[(1 p)Q nfI ,a1 ]1h
SI (S I ( x1 ), S I ( x2 ), , S I ( xh ))
Changsoon Park
20
◦ sI R*I [(1 p)Q*,I a1 ] : average no. of visits to Et xi & Ft y g
◦ Average period length
E( LI ) sI R*I [(1 p)Q*,I a1 ]H I E[ H I ( xh / 2 )] E[ H I ( EA( N0 ) )]
◦ Expected SSD
E(SS I ) sI R*I [(1 p)Q*,I a1 ]S I E[S I ( xh / 2 )] E[S I ( EA( N0 ) )]
special cause
start
A(1)
A( 2 )
period Ⅰ
Changsoon Park
A( N 0 1)
A( N 0 )
period Ⅱ
21
◦ Probability of E A( N 0 )
- the last adjustment time before a special cause occurs
Pr( A( N 0 ) t , E A( N 0 ) xi )
Pr( Et xi , Ft y g ) Pr( A( N 0 ) t Et xi , Ft y g )
B
A
t 1
*,a1
A sI [(1 p)Q*,*
I ] [(1 p)Q I ]1h( xi )
B 1gh( xi , y g ) [(1 p)Q nfI ,nf ]q 1 p1gh
q 1
p 1gh( xi , y g ) R nfI 1gh
h
E[ H I ( E A( N 0 ) )] H I ( xi ) Pr(E A( N 0 ) xi )
i 1
h
E[ S I ( E A( N 0 ) )] S I ( xi ) Pr(E A( N 0 ) xi )
i 1
Changsoon Park
22
3.2 Period Ⅱ
◦ merge {Et xh } into {Et xh / 2 }
' n ' class of no action (' n' ) and false signal only (' f ' )
keep 'a' , '1'
◦ s II : starting state vector of period Ⅱ
For i 1,2, , h, j 1,2, , g
if i h / 2, j g / 2
Pr( E A( N 0 ) xi )
s II ( xi , y j ) Pr( E A( N 0 ) xh / 2 ) Pr( E A( N0 ) xh ) if i h / 2, j g / 2
otherwise
0
Changsoon Park
23
: the time, counted from the beginning of period Ⅱ, that a special
cause occurs
special cause
A( N 0 1)
A( N 0 )
start
period Ⅱ
U
adjustment or signal
◦ s (q) : state vector at immediately before time
sII [(1 p)Q
Changsoon Park
n ,n q 1
I
]
p
24
◦ classes after
class
no action
‘ n’
adjustment
‘ a’
signal
‘ s’
‘*’
‘ as’
Changsoon Park
state
no. of states
{( xi , y j )}
i 1,2,, h
j 1,2, , g
gh
{( xi , y g )}
i 1,2,, h
h
{( xh , y j )}
j 1,2, , g
g
whole states
‘ a’ ‘ s’
g h
h g
25
◦ decomposition of the total transition matrix
‘ n’
‘ n’ Q II ,t
n ,n
Q ‘a’ 0
‘ s’ 0
' a' , ' s ' : absorbing states
‘ a’
Q nII,,at
*,*
II ,t
Ih
0
‘ s’
Q nII,,st
0
I g
◦ Define
'
g 'IIclass' Q nII,,n1 Q nII,,n2 Q nII,,nt 1 Q nII,',class
t
Pr({time to visit ' class ' after a special cause} t )
G
'class'
II
(k ) t k g II'class' (t )
for k 0,1, 2
t 1
k th monent of the time
Changsoon Park
26
H II : action(adjustment or siganl) interval length
Pr( H II t , q) s (q)g as
II (t q 1)1h g
0
1
q 1
q
1
s (q)
q 1
2
t 1
t
t q t q 1
period Ⅱ
Changsoon Park
27
LII : length of period Ⅱ ( H II )
AII : no. of adjustment in period Ⅱ
◦ Average period length
t
E ( LII ) t s (q )g as
II (t q 1)1h g
t 1 q 1
s (q ) (t q 1)g as
II (t )1h g
q 1
t 1
n
as
psII R [G as
(
1
)
(
R
I
)
G
II
I
II (0)]1h g
n
I
◦ Average no. of adjustments
h
E ( AII ) Pr( E A( N 0 1) xi , FA( N 0 1) y g )
i 1
psII R nI G aII (0)1h
Changsoon Park
28
◦ Expected SSD
SSD H
II
( xi ) t
{ t
t
t (t 1) 2
2 (t q 1) } a2
2
E ( SS II ) { t
t 1 q 1
t (t 1) 2
2
2 (t q 1) } a
2
s (q)g as
II (t q 1)1h g
3
psII R nI {[(1 2 )R nI 2 (1 p)Q nI (R nI ) 2 (2 1)]G as
II (0)
2
3 2
2 as
2
2 n
as
[(1 ) R I ]G II (1) G II (2)}
2
2
Changsoon Park
29
◦ Final state probability of period Ⅱ
Pr( E A( N 0 1) xi , FA( N 0 1) y g )
t
s (q)g aII (t q 1)1h ( xi )
t 1 q 1
q 1
t 1
s (q) g aII (t )1h ( xi )
n
I
psII R G aII (0)1h ( xi )
where R nI [I (1 p)QnI
Changsoon Park
, n 1
]
30
3.3 Period Ⅲ
◦ decomposition of the total transition matrix
Q*,*
III ,t
Q nIII,n,t
a ,n
Q III ,t
0
Q nIII,a,t
Q aIII,a,t
0
Q nIII, s,t
a ,s
Q III ,t
I g
' s ' : absorbing state
◦ s III : starting state vector of period Ⅲ
For i 1,2, , h, j 1,2,, g
Pr( E A( N 0 1) xi , FA( N 0 1) y g ) if j g
s III ( xi , y j )
if j g
0
Changsoon Park
31
◦ Define
, na na, na
na, na
na,'class'
g 'IIIclass' (t ) Q na
Q
Q
Q
III ,1
III , 2
III ,t 1 III ,t
Pr({time to visit ' class '} t )
G
'class'
III
'class'
(k ) t k g III
(t )
for k 0,1, 2
t 1
k th moment of the time
◦ Average period length
E( LIII ) sIII G sIII (1)1g
◦ Average no. of adjustments
E ( AIII ) sIII G aIII (0)1h
Changsoon Park
32
◦ Expected SSD
For t0 0,1,
Pr( A(t ) t0 , Et0 xi , A(t 1) t0 t )
Pr( A(t ) t0 , Et0 xi ) Pr( A(t 1) t0 t A(t ) t0 , Et0 xi )
sIII g aIII (t0 )1h ( xi )
1gh( xi , y g / 2 ) Q nIII,n,t0 1 Q nIII,n,t0 t 1Q nIII,as,t0 t 1h g
SSD H
III
( xi ) t
[t{1 ( r (t )U 1 ) 2 }
t (t 1) 2 2
] a
2
t (t 1) 2 2
] a
2
i 1 t0 1 t 1
Pr( A(t ) t0 , Et0 xi , A(t 1) t0 t )
h
E ( SS III ) [ t{1 ( r (t )U 1 ) 2 }
Changsoon Park
33
Expected Cost Per Unit Time (ECU)
CM : cost per monitoring
C A : cost per adjustment
CT : off-target cost per SSD
C F : cost per false signal
ECU CM
Changsoon Park
C A E ( AI AII AIII ) CT E ( S I S II S III ) CF E ( F )
E ( LI LII LIII )
34
© Copyright 2026 Paperzz