Pattern Formation in a Reaction-diffusion System Noel R. Schutt, Desiderio A. Vasquez Department of Physics, IPFW, Fort Wayne IN Turing patterns in a modified Lotka-Volterra model Turing Patterns • Predicted by Alan Turing in 1952 • Patterns in chemical/biological systems • Non-homogenous solutions to DE Turing Patterns Phys Rev Lett 64 (1990) 2953 Castets, Dulos, Boissonade, De Kepper Turing Patterns http://chaos.utexas.edu/research/spots/spots.html Lotka-Volterra Model x x y y y xy x: Prey or Activator y: Predator or Inhibitor Introduction to Ordinary Differential Equations Stephen Sapesrtone Lotka-Volterra Model http://mathworld.wolfram.com/Lotka-VolterraEquations.html Modified Lotka-Volterra Model • Change from a single value to one dimension of space • Add diffusion • Add intraspecies interaction term Modified Lotka-Volterra Model dX X kY 2 X r0 1 X d X 1 X 0 dY kX 2 Y 1 k f Y d Y d 1 X Modified Lotka-Volterra Model • Now patterns can develop • In 2005 patterns were found in this model in one dimension • Use finite difference equation to Reproduce results Modified Lotka-Volterra Model X Modified Lotka-Volterra Model Y 1D results reproduced, now expand to two dimensions How to solve the equation • To reduce the runtime, use an implicit Euler method for time • Space is in a 321x321 grid How to solve the equation • Original math code in FORTRAN • Math code is fairly simple • Perl wrapper code to simplify working with math code • php code to organize results – Results take 20MB to 2.8GB per run Initial conditions • Solve equation for steady states – Each set of values gives three steady states e.g. 7.99 (unstable), 11.48 (unstable), 22.22 (stable) • Filled the grid with this value ± small disturbance How to solve the equation Initial conditions Initial conditions First group Development - X x0=14 Development - Y x0=14 X 9 holes Y x0=14 X 9 holes Y x0=15 Second group Development - X X 8 holes Y Third group A 3 holes B 4 holes C • Double the length of the axes A 1/10 x0=44a A 2/10 x0=44a A 3/10 x0=44a A 4/10 x0=44a A 5/10 x0=44a A 6/10 x0=44a A 7/10 x0=44a A 8/10 x0=44a A 9/10 x0=44a A 10/10 x0=44a B x0=44b C x0=44c A x0=45a B x0=45b C x0=45c Varied initial values Conic initial conditions r= real(i) - rnx2 + real(j) - rnx2 2 2 xbar2 - xbar1 xbar = r - rxb1 + xbar1 rnx2 - rxb1 Cone Cone Flat-top cone 1/4 x0=44ac50 Flat-top cone 2/4 x0=44ac50 Flat-top cone 3/4 Flat-top cone 4/4 Pyramid initial conditions • Similar to the cone Pyramid 1/2 Pyramid 2/2 Flat-top pyramid 1/2 100px Flat-top pyramid 2/2 Flat-top pyramid • Same holes as before, but four of them Flat-top pyramid 1/7 x0=44ac70 Flat-top pyramid 2/7 x0=44ac70 Flat-top pyramid 3/7 x0=44ac70 Flat-top pyramid 4/7 x0=44ac70 Flat-top pyramid 5/7 x0=44ac70 Flat-top pyramid 6/7 x0=44ac70 Flat-top pyramid 7/7 x0=44ac70 Flat-top pyramid • Holes ‘repel’ each other Pattern Formation in a Reaction-diffusion System Noel R. Schutt, Desiderio A. Vasquez Department of Physics, IPFW, Fort Wayne IN
© Copyright 2026 Paperzz