MATH 7770-01 LIMIT THEOREMS FALL 2010 Lecture 35. Improvements in limit theorems with power βtailsβ, continued. The integrals in the sums over 1 < πΌπ < 2 have been already evaluated in Lecture 14; the summands in them are equal to Ξ(2 β πΌπ ) [ + πΌπ π πΌπ π ] πΌπ β β (ππΌπ + πβ β π β (π+ β£π‘β£ πΌπ ) cos πΌπ β ππΌπ ) sign(π§) β sin πΌπ β 1 2 2 (35.1) (see formula (14.12)); and it can be rewritten in exactly the form (34.11) if we understand the function Ξ as being continued analytically to all complex numbers except non-positive integers (see the text after formula (14.12)). So we can extend the ο¬rst sum in (34.20) to all πΌπ between 0 and 2. β« β β« (πππ‘π₯ β 1 β ππ‘π₯) ππ΅ + (π₯) and If 1 < π½ < 2, the last two integrals in (34.20) are 0 0 (πππ‘π₯ β 1 β ππ‘π₯) ππ΅ β (π₯), and we handle them by integrating by parts; say, for the ββ second one: [ ππ‘π₯ ]0 (π β 1 β ππ‘π₯) β π΅β (π₯) ββ β ππ‘ β« 0 (πππ‘π₯ β 1) β π΅β (π₯) ππ₯. (35.2) ββ The term outside the integral is equal to 0 because limπ₯β0β β£(πππ‘π₯ β 1 β ππ‘π₯) β π΅β (π₯)β£ β€ limπ₯β0β (π‘2 π₯2 /2)β π(β£π₯β£βπ½ ) = 0, limπ₯βββ β£(πππ‘π₯ β1βππ‘π₯)β π΅β (π₯)β£ β€ limπ₯βββ (2+β£π‘β£β£π₯β£)× × π(β£π₯β£βπ½ ) = 0; and the absolute value of the integral does not exceed [β« β« β£π‘β£β1 constβ 2β β£π₯β£ ββ βπ½ 0 ππ₯+ β£π‘β£β£π₯β£β β£π₯β£ βπ½ ] ππ₯ = constβ β£π‘β£β1 ( 2 1 ) π½β1 + β β£π‘β£ . (35.3) π½β1 2βπ½ So we have: π (π‘) β 1 =β β π: 0<πΌπ [ πΌπ π πΌπ π ] πΌπ β β Ξ(1 β πΌπ ) β (π+ β π β (π+ β£π‘β£ πΌπ + ππΌπ ) cos πΌπ β ππΌπ ) sign(π‘) β sin 2 2 <2 + ππ1 π‘ + π(β£π‘β£π½ ) (π‘ β 0) (35.4) (the term ππ1 π‘ is inο¬nitely small compared to all terms with πΌπ < 1, and inο¬nitely large compare to those with πΌπ > 1, so perhaps we shouldnβt put all terms with 0 < πΌπ < 2 together, but write the terms with 0 < πΌπ < 1 ο¬rst, then ππ1 π‘, then the terms with 1 < πΌπ < 2, and ο¬nally π(β£π‘β£π½ ). But of course (35.4) looks shorter as it is written). Problem 72 . Find the ο¬rst pseudo-moment for the distribution of Problem 70 with accuracy to 0.1. So we can write an asymptotic expansion for π (π‘) for the distribution of Problem 70 (this way I am telling you that we can take π½ > 1 in this problem). 1 If π½ > 2, we subtract from the integrand in the last two integral in (34.20) and subtract from it β π‘2 π₯2 /2; the second pseudo-moment π2 is deο¬ned as β« β π2 = [ π₯ π πΉ (π₯)β1+ 2 0 β βπΌπ π+ πΌπ π₯ ] β« 0 + ββ π: 0<πΌπ <2 β [ π₯2 π πΉ (π₯)β βπΌπ πβ πΌπ β£π₯β£ ] (35.5) π: 0<πΌπ <2 (the second pseudo-moment, in contrast with the second moment, neednβt be nonnegative). We add to and subtract from πππ‘π₯ β1βππ‘π₯ in (34.20) the next Maclaurin term βπ‘2 π₯2/2: π (π‘) β 1 =β β π: 0<πΌπ [ πΌπ π πΌπ π ] πΌπ β β Ξ(1 β πΌπ ) β (π+ β π β (π+ β£π‘β£ πΌπ + ππΌπ ) cos πΌπ β ππΌπ ) sign(π‘) β sin 2 2 <2 + ππ1 π‘ β π2 π‘2/2 β« β + β [ (πππ‘π₯ β 1 β ππ‘π₯ + π‘2 π₯2/2) π πΉ (π₯) β 1 + 0 βπΌπ π+ πΌπ π₯ ] π: 0<πΌπ <2 β« 0 [ (πππ‘π₯ β 1 β ππ‘π₯ + π‘2 π₯2/2) π πΉ (π₯) β + β ] βπΌπ πβ . πΌπ β£π₯β£ (35.6) π: 0<πΌπ <2 Now we add to and subtract from the expressions in the brackets the sums β β β βπΌπ + βπΌπ (the only thing we seem to be doing is adding , π: 2<πΌπ <3 ππΌπ β£π₯β£ π: 2<πΌπ <3 ππΌπ π₯ and subtracting the same things again and again). We get instead of the last two integrals: ββ [ β β« π+ πΌπ π: 2<πΌπ <3 β 0 (πππ‘π₯ β 1 β ππ‘π₯ + π‘2 π₯2/2) π(βπ₯βπΌπ ) β« 0 ] β + ππΌπ (πππ‘π₯ β 1 β ππ‘π₯ + π‘2 π₯2/2) πβ£π₯β£βπΌπ ββ β« β + β [ (πππ‘π₯ β 1 β ππ‘π₯ + π‘2 π₯2/2) π πΉ (π₯) β 1 + 0 β« βπΌπ π+ πΌπ π₯ ] (35.7) π: 0<πΌπ <3 0 + [ (πππ‘π₯ β 1 β ππ‘π₯ + π‘2 π₯2/2) π πΉ (π₯) β ββ β ] βπΌπ πβ . πΌπ β£π₯β£ π: 0<πΌπ <3 Letβs evaluate the ο¬rst tow integrals. For 2 < πΌπ < 3, integrating by parts, we get: β« β (πππ‘π₯ β 1 β ππ‘π₯ + π‘2 π₯2/2) π(βπ₯βπΌπ ) 0 [ ]β = (πππ‘π₯ β 1 β ππ‘π₯ + π‘2 π₯2/2) β (βπ₯βπΌπ ) 0 β ππ‘ β« β (πππ‘π₯ β 1 β ππ‘π₯) β (βπ₯βπΌπ ) ππ₯. 0 (35.8) 1 π(β π₯1βπΌπ ), The term outside the integral is equal to 0. Rewriting (βπ₯βπΌπ ) ππ₯ as πΌπ β 1 we integrate by parts another time (again with the term outside the integral being equal 2 to 0), and get: β« β (πππ‘π₯ β 1 β ππ‘π₯ + π‘2 π₯2/2) π(βπ₯βπΌπ ) = β 0 2 π‘ =β (1 β πΌπ )(2 β πΌπ ) β« π‘2 πΌπ β 1 β (π ππ‘π₯ β« β (πππ‘π₯ β 1) β π₯1βπΌπ ππ₯ 0 (35.9) β 1) π(βπ₯ 2βπΌπ ). 0 Since 0 < πΌπ β 2 < 1, the integral here is of the kind that we have considered in Lecture 14, and it is equal ( ) βΞ 1 β (πΌπ β 2) β πβπ(πΌπ β2)β sign(π‘)β π/2 β£π‘β£πΌπ β2 . (35.10) Multiplying by the factor in front of the integral in (35.9) and taking into account that Ξ(3 β πΌπ ) β1 = πβπβ 2β sign(π‘)β π/2 and = Ξ(1 β πΌπ ) (with the analytically-continued (2 β πΌπ )(1 β πΌπ ) Ξ-function), we get that the π-th summand in the ο¬rst sum in (35.7) is equal to [ πΌπ π πΌπ π ] πΌπ β β β π β (π+ β£π‘β£ , βΞ(1 β πΌπ ) β (π+ πΌπ + ππΌπ ) cos πΌπ β ππΌπ ) sign(π‘) β sin 2 2 (35.11) that is, it is expressed by exactly the same formula as for 0 < πΌπ < 1 or 1 < πΌπ < 2. So we get: π (π‘) β 1 =β β π: 0<πΌπ [ πΌπ π ] πΌπ πΌπ π β β β π β (π+ β£π‘β£ Ξ(1 β πΌπ ) β (π+ πΌπ β ππΌπ ) sign(π‘) β sin πΌπ + ππΌπ ) cos 2 2 <3 + ππ1 π‘ β π2 π‘2 /2 β« β + β [ (πππ‘π₯ β 1 β ππ‘π₯ + π‘2 π₯2 /2) π πΉ (π₯) β 1 + 0 β« βπΌπ π+ πΌπ π₯ ] π: 0<πΌπ <3 0 + β [ (πππ‘π₯ β 1 β ππ‘π₯ + π‘2 π₯2 /2) π πΉ (π₯) β ] βπΌπ πβ β£π₯β£ . πΌπ (35.12) Let us formulate what we are getting this way (adding and subtracting the same things, expressing integrals through the Ξ-function, and from time to time saying βif π½ is so and soβ and estimating the remainder term) as a lemma (not a theorem, because it is not a result about the limiting behavior of the distribution of the normalized sum with improvements). Lemma 35.1. Let the distribution function satisfy the conditions (34.3), (34.4) with non-integer πΌπ , π½; let conditions (34.9) be satisο¬ed if π½ < 1. Then ββ π: 0<πΌπ <3 π (π‘) β 1 β [ πΌπ π πΌπ π ] πΌπ β β =β Ξ(1 β πΌπ ) β (π+ β π β (π+ β£π‘β£ πΌπ + ππΌπ ) cos πΌπ β ππΌπ ) sign(π‘) β sin 2 2 (35.13) π + βπ½β β ππ ππ π‘π /π ! + π(β£π‘β£π½ ) π =1 3 (the ο¬rst sum is taken over all π). If the conditions (34.1), (34.2) are satisο¬ed, and condition (34.8) for π½ < 1, then the asymptotic expansion (35.13) holds with π(β£π‘β£π½ ) replaced with π(β£π‘β£π½ ) as π‘ β 0. The proof has in fact been carried out for the remainder term π(β£π‘β£π½ ); the only thing that remained was to say βetc.β The statement with π(β£π‘β£π½ ) is proved in the same way, only ±β£π‘β£β1 as( the limits of integration are replaced with some functions ± π’(π‘) = π(β£π‘β£β1 ), ) such that π΅± ± π’(π‘) (or the corresponding total variations on the interval from π’(π‘) to β or from β β to β π’(π‘)) are π(β£π‘β£βπ½ ) as π‘ β 0. We know what we are doing after this: we write the asymptotic expansion for ln π (π‘) as π‘ β 0 using the Maclaurin expansion ln π€ = (π€ β 1) β (π€ β 1)2 /2 + (π€ β 1)3 /3 β ... ; ( π§ ) after this, the expansion in (negative) powers of π of π ln π , and after that, one for ( π§ )π { ( π§ )} π΅π πππ (π§) = π = exp π ln π . π΅π π΅π 4
© Copyright 2025 Paperzz