Exam 1 Review 1. Use the graph given in the above figure to find the following values, if they exist. If a limit does not exist, explain why. a. b. e. f. c. g. d. h. i. 2. Complete the table and use the result to estimate the limit. 3. In the following function find an open interval about Then give a value for holds. such that for all satisfying a. b. c. 4. Use the a. definition to prove the following. b. 5. Find the limit if it exists. a. b. c. d. g. j. m. e. h. f. i. k. n. l. on which the inequality the inequality holds. 6. Suppose and a. Find b. c. d. 7. Let Compute the following limits or state that they do not exist. a. b. c. 8. Let the above graph be represented by the function a. Find b. Does and exist? If so, what is it? If not, why not? c. Find and d. Does exist? If so, what is it? If not, why not? 9. Find the limits a. b. c. d. e. f. g. h. 10. For what values of is continuous at every 11. Find the limits. a. d. b. c. e. f. Solution: 1. a. 3 b. 2 c. 3 d. Does not exist e. 2 f. 3 g. 2 h. 3 2. Based on the above table we can estimate the limit as 4. 3. a. b. c. 5. a. b. c. i. j. k. d. l. 6. a. 7. a. 8. a. b. No, c. d. Yes, a. b. 9. b. b. c. e. f. m. n. g. d. c. Does not exist. c. d. 1 e. d. e. f. 10. 11. a. h. b. c. f. g. h. i. 3
© Copyright 2026 Paperzz