2.2.7.a. Ekstrudeerimine • 1. Protsesside klassifitseerimine. • 2. Töövahendid e. seaded. • 3. Tooriku deformeerumine, määrded ja defektid ekstrudeerimisel. • 4. Ekstrudeerimisprotsessi analüüs, pingeja deformatsiooniolek. • 5. Probleemid ja defektid ekstrudeerimisel. Ekstrudeerimine • Ekstrudeerimisprotsesside klassifitseerimine • Kuumalt • Külmalt • Päriekstrudeerimine • Vastuekstrudeerimine Meetodid High production rate Excellent dimensional tolerance and surface finish of extruded part Significant savings in material and machining Higher tensile strength in the extruded part than in original material Favorable grain flow to improve strength High production rate Excellent dimensional tolerance and surface finish of extruded part Significant savings in material and machining Higher tensile strength in the extruded part than in original material Favorable grain flow to improve strength Ekstrudeerimise stantsi plokk Skeem D CL • Die Insert Inner Diameter, • Billet Length, D Punch L • Extrude Diameter, d Billet L α R • Die (Opening) Angle, α • Die Land, l • Die Radius, l r R • Transition Radius, r Container d Jõu arvestus 2 2 ln Rµ P = Aoσ ave ln R + α + + πDLσ o µ 3 sin 2α (lbf) In Ref. [7] σ o (psi) σ ave = Ao D 2 R= = A1 d 2 K (ln R ) (psi) n+1 Ao , A1 (in.2) µ α , D, L (degree, inch, inch) Material Factors: σ o ,σ ave Geometrical Factors: α , D , L , R Load(klb) 160 140 120 100 80 60 40 20 0 5 10 15 30 55 Die Angle(degree) 70 Load-Stroke Curve Load(klb) 60 50 40 30 20 10 0 0.0 0.4 0.8 1.2 1.6 Punch Stroke(in.) 2.0 Deformatsioonitemperatuur Päri- ja vastuekstrudeerimine Deformatsioonikiirused ekstrudeerimisel Erinevad deformatsioonikolde kujud ekstrudeerimisel Backward Cup Extrusion Definition of Geometric Variables - Backward Cup Extrusion Criteria - Effect of Punch Face Shape - Punch Nose Design - Load Calculation - Parametric Evaluation by FEM Material (Flow Stress) Reduction in Area Included Face Angle Billet Length Vastuekstrudeerimine CL Punch R β L Billet df l 2α dP Ejector D Container Templi vormid ekstrudeerimisel Deformatsiooniliinid Load-punch stroke curve Load(klb) 250 200 150 100 50 0 0.00 0.14 0.29 0.42 0.49 0.56 0.64 Punch Stroke(in.) Parametric Evaluation by FEM (4.6) Billet Length III (4.6.5) Strain vs. radius Case A Case B L1=0.8 in. L2=0.4 in. ε max = 4.201 ε max = 2.576 Max. strain at punch land a b Unit:in. - Punch face shape determines a metal flow pattern since points a and b show the same strain values COLD AND HOT FORGING Fundamentals and Applications ERC NSM H APPENDIX 17.3 Backward Cup Extrusion ERC for Net Shape Manufacturing The Ohio State University Columbus, Ohio Phone: 614-292-9267 Fax: 614-292-7219 http://www.ercnsm.org Appendix to Cold and Hot Forging: Fundamentals and Applications. © ASM International®. All Rights Reserved. Introduction (0) Backward Cup Extrusion (4) (2.1.2.2.1) - Definition of Geometric Variables - Backward Cup Extrusion Criteria - Effect of Punch Face Shape - Punch Nose Design - Load Calculation - Parametric Evaluation by FEM • Material (Flow Stress) • Reduction in Area • Included Face Angle Tool setup for backward cup extrusion • Billet Length - The metal flow is opposite to the direction of punch movement Introduction (0) Backward Cup Extrusion (4) (2.1.2.2.1) - Backward Cup Extrusion Animation Please click on the image to view this simulation The metal flow is opposite to the direction of punch movement Backward Cup Extrusion (4) Definition of Geometric Variables (4.1) CL • Die Inner Diameter, • Billet Length, D L Punch • Punch Diameter, d P R • Flat Diameter, d f • Included Face Angle, 2α • Punch Land, l • Punch Radius, • Relief Angle, β β L Billet df l 2α R dP Ejector D Container Backward Cup Extrusion (4) Backward Cup Extrusion Criteria (4.2) CL • Max & Min Reduction in Area: 20 ~ 25% ≤ % R .A . ≤ 70 ~ 75% d2 %R .A . = 2 × 100 D Punch P w • Max Depth of Extruded Hole: h = 2 ~ 3× dP • Min Bottom Thickness h Billet t of Extruded Cup: t = 1 ~ 1.5 × w Ejector Container Backward Cup Extrusion (4) Punch Face Geometry (4.3) - The punch face shape has a significant effect on the frictional force and metal flow Highest pressure Lower pressure Combination Flat Conical Flat & conical Lowest pressure but limited application Spherical - Advantage of the combination is that the lubricant carrier and the lubricant cannot be separated easily or overextended locally as is the case with conical faces Backward Cup Extrusion (4) Punch Nose Design (4.4) Based on Punch Diameter, CL dP • Flat Diameter, d f = d P − [ 2 R + ( 0.2 ~ 0.3 )d P ] • Included Face Angle, 2α = 160 o ~ 170 o • Punch Land, l = 0 . 3 ~ 0 .7 × d P β R d f l • Punch Radius, R = 0.05 ~ 0.1 × d P • Relief Angle, β = 4o ~ 5o 2α d p Punch design recommended by ICFG [6] Backward Cup Extrusion (4) Load Calculation (4.5) - Formulas for predicting the forging load in backward extrusion are derived either through approximate method of plasticity theory or empirically from a series of experiments P = Aoσ o (3.45 ln R + 1.15 ) • Yield stress, • Extrusion ratio, σo (lbf) for 0.1 to 0.3% C steel In Ref. [7] (psi) Ao D 2 R= = A1 d 2p Initial, final cross sec. Area, Ao , A1 (in2) - None of the formulas for the prediction of extrusion load take into account the punch geometry (i.e.,included face angle, punch radius) Material Factors: Geometrical Factors: σo R Backward Cup Extrusion (4) Parametric Evaluation by FEM (4.6) - Factors affecting load in backward cup extrusion • Flow stress, σ = f (ε , ε& ,T , S ) ε ε& T S Effective strain Effective strain-rate Temperature Microstructure Material • Reduction in area, % R .A . = f ( D , d ) • Included face angle, 2α • Billet length, L • Diameter, D Tool Geometry Billet Dimensions Parametric Evaluation by FEM (4.6) Parameters Considered in FEM (4.6.1) 44 Parameters Parameters in in FEM FEM simulations simulations CL Velocity Profile of Mechanical Press is Considered Punch R β 4. Billet Length (0.8 in., 0.4 in.) L Billet df 2α 3. Reduction in Area (30%, 60%) 1. Material (Flow Stress) (AISI 1020, 1035) 2. Included Face Angle (160o, 170o) dP Ejector D Container Billet Diameter is fixed to 1.0 in. Parametric Evaluation by FEM (4.6) Material (4.6.2) • Simulation Conditions %R.A. : 60%, Included Face Angle : 160o Size (L x D) : 0.8 x 1.0 in. Load-Stroke Curve Load(klb) Case B 250 200 150 - The load increases rapidly to its max and then reduces slowly to its final value 100 Case A 50 0 - The flow stress of the billet 0.0 0.1 material directly influences the extrusion load 0.2 0.3 0.4 0.5 0.6 Punch Stroke(in.) 0.7 • Flow stress Case A : AISI 1020, σ = 108.1ε 0.20 ( ksi ) Case B : AISI 1035, σ = 130.8ε 0.17 ( ksi ) Parametric Evaluation by FEM (4.6) Reduction in Area I (4.6.3) • Simulation Conditions Material AISI 1035 Included Face Angle : 160o Size (L x D) : 1.0 x 1.0 in. Load-Stroke Curve Load(klb) - The extrusion load increases with increasing reduction in 200 150 Case B 100 50 Case A area because the amount of deformation increases 0 0.0 - The higher the reduction in area the more the load decreases after peak point 0.2 0.4 0.6 0.8 Punch Stroke(in.) • Reduction in Area (%R.A.) Case A - 30%, Case B - 60% Parametric Evaluation by FEM (4.6) Reduction in Area II (4.6.3) Strain vs. Radius Case A Case B %R.A. = 30% %R.A. = 60% 0.14 ≤ ε max ≤ 4.73 0.29 ≤ ε max ≤ 4.12 Max. strain Unit:in. - The greater the reduction in area, the higher the effective strain Parametric Evaluation by FEM (4.6) Included Face Angle I (4.6.4) • Simulation Conditions Material AISI 1035 %R.A. : 60% Size (L x D) : 1.0 x 1.0 in. Load-Stroke Curve Load(klb) Case A 250 200 - Generally, the value of punch pressure decreases with decreasing included face angle, 2α - Case B shows slightly lower load than Case A 150 Case B 100 50 0 0.0 0.2 0.4 0.5 0.7 Punch Stroke(in.) 0.8 • Included Face Angle, 2α Case A - 170o, Case B - 160o Parametric Evaluation by FEM (4.6) Included Face Angle II (4.6.4) Strain vs. Radius Case A Angle, 2α = 160o 0.36 ≤ ε ≤ 3.96 Case B Angle,2α = 170o 0.31 ≤ ε ≤ 3.96 Unit:in. Parametric Evaluation by FEM (4.6) Included Face Angle III (4.6.4) Zoomed on punch face (Local metal flow) Case A Case B Angle, 2α = 160o Angle, 2α = 170o - Included face angle of 160o gives better material flow around punch nose region Parametric Evaluation by FEM (4.6) Billet Length I (4.6.5) Case A Case B - In backward extrusion, the billet length has little effect on the extrusion load Punch - However, when billet length was longer, high value of strain was Billet L1 Punch Billet predicted near the punch land Container L1 = 0.8( in .) L2 Container L2 = 0.4 ( in .) Parametric Evaluation by FEM (4.6) Billet Length II (4.6.5) • Simulation Conditions Material : AISI 1035 %R.A. : 60% Included Face Angle : 160o Load-punch stroke curve Load(klb) 250 200 150 - Decrease in load is caused by the decrease in the volume of material participating in the deformation process 100 Case A Case B 50 0 0.00 0.14 0.29 0.42 0.49 0.56 0.64 Punch Stroke(in.) • Billet Length Case A : Case B : L1 = 0.8( in .) L2 = 0.4 ( in .) Parametric Evaluation by FEM (4.6) Billet Length III (4.6.5) Strain vs. radius Case A Case B L1=0.8 in. L2=0.4 in. ε max = 4.201 ε max = 2.576 Max. strain at punch land a b Unit:in. - Punch face shape determines a metal flow pattern since points a and b show the same strain values Introduction (0) Lateral Extrusion with Multi-Action Tooling (5) (2.1.2.2.1) Punch Die - Definition of Geometric Variables - Load Calculation - Parametric Evaluation by FEM Billet • Material (Flow Stress) • Extrude Height Die • Billet Length Ejector Tool setup for axisymmetric lateral extrusion - In this module only axisymmetric (round) parts are considered. In practice lateral extrusion is also applied to form non-axisymmetric parts Introduction (0) Lateral Extrusion with Multi-Action Tooling (5) (2.1.2.2.1) - Lateral Extrusion Animation Please click on the image to view this simulation The metal flow is perpendicular or at an angle to the direction of punch movement Lateral Extrusion with Multi-Action Tooling (5) Definition of Geometric Variables (5.1) CL • Die Inner Diameter, D Punch • Billet Length, L L Billet Container h • Extrude Height, h Container • Extrude Diameter, E D E Lateral Extrusion with Multi-Action Tooling (5) Load Calculation (5.2) - Formulas for predicting the lateral extrusion loads 2 D 4 h 2 E P = 0.866 Aoσ ave 1.366 + + + ln 2 h 3 D D (lbf) In Ref. [7] • Average flow stress of strain hardening material, σ ave = K ( ε ave ) (psi) n+1 • Average effective strain, ε ave D 2d 2 E = 0.683 + + + ln 8 h 3 D D 2 • Die inner diameter, Extrude diameter, D,E (inch, inch) Material Factors: Geometrical Factors: σ ave D , h, E Lateral Extrusion with Multi-Action Tooling (5) Parametric Evaluation by FEM (5.3) - Factors affecting load in lateral extrusion • Flow stress, σ = f (ε , ε& ,T , S ) ε ε& T S Effective strain Effective strain-rate Temperature Microstructure • Extrude height, • Billet length, L h Material Tool Geometry Billet Dimension Parametric Evaluation by FEM (5.3) Parameters Considered in FEM 33 Parameters Parameters in in FEM FEM simulations simulations D CL (5.3.1) Billet Diameter is fixed to 1.0 in. Velocity Profile of Mechanical Press is considered Punch #1 1. Material (Flow Stress) (AISI 1020, 1035) 3. Billet Length (1.5 in., 1.0 in.) Container L h Billet Container Punch #2 2. Extrude Height (0.25 in., 0.15 in.) Parametric Evaluation by FEM (5.3) Material I (5.3.2) • Simulation Conditions Size (L x D) : 1.5 x 1.0 in. Stroke : +/- 0.15 in. / punch Extrude height : 0.25 in. Load-Stroke Curve Load(klb) 250 Case A 200 150 - Loads increase monotonously as the upper and the bottom punch move toward each other 100 Case B 50 0 0.00 0.03 - As punch stroke increases, the difference between A and B becomes greater 0.06 0.09 0.12 Punch Stroke(in.) 0.15 • Flow stresses Case A : AISI 1035, σ = 130.8ε 0.17 ( ksi ) Case B : AISI 1020, σ = 108.1ε 0.20 ( ksi ) Parametric Evaluation by FEM (5.3) Material II (5.3.2) Strain vs. Radius Case A Case B AISI 1035 AISI 1022 Max. strain ε max = 1.39 ε max = 1.81 Unit:in. - At center, rapid metal flow in radial direction leads to higher strain when billet material of AISI 1022 is used Parametric Evaluation by FEM (5.3) Extrude Height I (5.3.3) • Simulation Conditions Material AISI 1035 Size (L x D) : 1.5 x 1.0 in. Stroke : +/- 0.15 in. / punch Load-Stroke Curve Load(klb) 350 Case A 300 250 200 150 - When the extrude height was reduced by 40%, load increases by about 30% 100 Case B 50 0 0.00 0.03 0.06 0.09 0.12 Punch Stroke(in.) • Extrude Height Case A : Case B : h1 = 0.25 ( in .) h2 = 0.15 ( in .) 0.15 Parametric Evaluation by FEM (5.3) Extrude Height II (5.3.3) Strain vs. Radius Case A Case B d1=0.25 in. d2=0.15 in. ε max = 1.39 ε max = 1.79 Max. strain Unit:in. - Once metal flow in the lateral direction is started max. strain is developed Parametric Evaluation by FEM (5.3) Billet Length I (5.3.4) • Simulation Conditions Material : AISI 1035 Stroke : +/- 0.15 in. / punch Extrude height : 0.25 in. - For different billet lengths investigated here, no changes in load were predicted Load-Stroke Curve Load(klb) 250 Case A 200 150 Case B 100 50 0 0.00 0.03 - However, if L is very large some increase in load due to friction can be expected 0.06 0.09 0.12 Punch Stroke(in.) • Billet Length Case A : Case B : L1 = 1.5 ( in .) L2 = 1.0 ( in .) 0.15 Parametric Evaluation by FEM (5.3) Billet Length II (5.3.4) Strain vs. Radius Rigid zone Case A Case B L1=1.5 in. L2=1.0 in. ε max = 1.39 ε max = 1.41 Unit:in. - For these two different billet lengths, there is no significant difference in strain values Cold Extrusion Glossary (G) - Forward Rod Extrusion: The metal flow is in the direction of the ram motion • Open Die Extrusion: Reduction of the cross section without supporting the undeformed portion of the component in a container • Trapped Die Extrusion: In forward extrusion, the entire billet is supported by the container - Backward Extrusion: The metal flow is opposite to the direction of the ram motion of the machine • Backward Cup Extrusion: A thin-walled hollow body is extruded from a solid component by backward extrusion - Lateral Extrusion: The flow of metal is perpendicular or at an angle to direction of the ram motion Cold Extrusion Nomenclature (N) Backward Extrusion • Reduction in Area, % R .A . • Die Inner Diameter, D • Punch Diameter, d P • Flat Diameter, d f • Included Face Angle, 2α • Punch Land, l • Punch Radius, R • Relief Angle, β • Hole Depth, h • Bottom Thickness, t Lateral Extrusion • Die Inner Diameter, D • Extrude Height, h • Extrude Length, L • Extrude Diameter, E Load Calculation • Flow stress, σ • Yield Stress, σ o • Average Flow Stress, σ ave • Average Effective Strain, ε ave Cold Extrusion References (R) [1] Metal Forming: Fundamentals and Applications, T. Altan, S.I. Oh, and Harold L. Gegel, American Society for Metals, 1983 [2] Product and Forming Sequence Design for Cold Forging, H. Kim, K. Sevenler, and T. Altan, ERC/NSM-B-D-91-52, 1991 [3] A User’s Manual for FORMEX 1.0, H. Kim, K. Sevenler, and T. Altan, ERC/NSM-B-D-91-55, 1991 [4] Defects in Cold Forging, Final Report, ICFG Subgroup “Material and Defects,” 1996 [5] Source Book on Cold Forging, American Society for Metals, 1975 [6] Cold Forming, ICFG, 1992 [7] P.S. Raghupathi, S.I. Oh and T. Altan,”Methods of Load Estimation in Flashless Forging Process,” Topical Report No. 10, Battelle Columbus Lab., August 1982 [8] Deform 2D User Manual, SFTC, Columbus OH, 1996
© Copyright 2025 Paperzz