Eigenvalues and Eigenvectors
• A(nxn) has precisely n, not necessarily distinct
eigenvalues.
• That are the roots of p(λ) = det(λI-A) = 0
• In practice, p(λ) is difficult to obtain
Localisation of the eigenvalues
• Theorem (Hadamard-Gershgorin) : Let A an nxn
matrix and Di denote the circle in the complex plane
n
with center aii and radius
a
j 1
ij
; that is
j i
n
Di z C; Z aii aij
i 1
j i
4
A 0
2
Let
D3
2
0
Z C ; Z 4
Z C ; Z 2
Z C ; Z 9
D1
D2
1
1
1
9
2,
1,
2.
Two eigenvalue s within D1 D2 and one within D3
( A) max 1i 3 i ,
7 ( A) 11
• Theorem: The eigenvalues of a real symmetric matrix A are real.
• Theorem: If
1 , 2 , ..., n are the eigenvalue s of the matrix A we have
1 2 ... n trace( A)
1. 2. ... . n det( A)
• Definition: Two nxn matrices A and B are said to be similar if a
non-singular matrix S exists with A = S-1.B.S
• Theorem: Suppose A and B are similar nxn matrices
and λ is an eigenvalue of A, with associated
eigenvector X. Then λ is also an eigenvalue of B and
if A =S-1BS, then SX is an eigenvector associated with
λ and the matrix B.
• Definition:
A set of vectors V (1) , V (2) , ..., V (n) is called orthogonal
if (V (i) ) t V (j) 0 for all i j. If, in addition, (V (i) ) t V (i) 1
for all i 1, 2, ..., n, then the set is called orthonorma l.
• Theorem: If A is a matrix and λ1, λ2, …, λk are distinct
eigenvalues of A with associated eigenvectors x(1),
x(2),…,x(k), then {x(1), x(2),…,x(k)}, is linearly
independent.
• Theorem: An orthogonal set of vectors that does not
contain the zero vector is linearly independent.
• Definition: An nxn matrix P is said to be an
orthogonal matrix if P-1 = Pt.
• Corollary: If A is a symmetric nxn matrix, then there
exist n eigenvectors of A that form an orthonormal
set.
• If A is an nxn symmetric matrix, then there exists an
orthogonal matrix P such that D = P-1AP where D is a
diagonal matrix whose diagonal entries are the
eigenvalues of A.
The algebraic eigenvalue problem
• Let A be a nxn matrix. Find A.x = λ.x where λ:scalar
and x a vector.
• det(A- λ.I) X = 0
2 0 0
A 2 2 1 , det( A .I ) 3 6.2 11. 6 0
1 1 2
1 1, 2 2, 3 3
Eigenvectors:
1 0
0
1 0 0
P 1 1 1 and D 0 2 0
1 2 1
0 0 3
with D P 1. A.P
Eigenvalues of symmetric tridiagonal matrices
Sturm sequences
• The matrix A=(aij) is tridiagonal if aij = 0 if |i-j|>1
• Example:
a1
b
2
0
A
.
.
0
b2
0
.
.
a2
b3
.
.
b3
a3
b4
.
.
.
.
.
.
.
bn 1
an 1
.
.
0
bn
and aij=aji
0
.
.
0
bn
an
Sturm sequences
P0 ( ) 1 P1 ( ) (a1 )
P2 ( ) (a2 ).P1 ( ) b22 .P0 ( )
for r 1, 2,..., (n 1).
Pr 1 ( ) (ar 1 ).Pr ( ) br21.Pr 1 ( )
Example :
1
2
A
0
0
2 0 0
1 2 0
2 1 2
0 2 1
where a1 a2 a3 a4 1 and b 2 b 3 b 4 2
two roots [-1, 3]
two roots [-3,5]
1 2.236 and 2 -2.236
3 4.236 and 4 -0.236
Jacobi Method (Eigenvalues and Eigenvectors)
• Suppose that A = (aij) is a symmetric matrix.
• Let Ω denote the first orthogonal matrix:
.
. 0
1 0 .
0 .
.
.
c s
.
.
s
c
.
.
. 0
0
.
.
.
0
1
• Select row p and column q for which apq ≠ 0
• Form the preliminary quantities
a qq - a pp
2a pq
; t
sign( )
( 2 1)
with sign( ) 1 if 0
sign( ) -1 if 0
and c
1
t 1
2
; s ct
• Start with A(0) = A, and Q(0) = I
• Construct the sequence :
A (k 1) k A (k) Tk
( k 1)
(k )
Q
k Q
• Stop with A(k) is a diagonal matrix
• D = Q.A.QT where D diagonal matrix
• Q Eigenvectors matrix.
Example
1 2 3
2 1 4
A
3 4 1
4 3 2
apq a14 4
4
3
2
1
Eigenvalue s : - 8 i 10
p 1 and q 4
t
aqq a pp
2a pq
0
sign ( )
1
1
c
( 2 1) (1/ 2 )
(t 2 1) (1/ 2 )
S ct
sc
2
2
0
0
2
2
0 0
1 0
0 1
0 0
2
2
2
2
0
0
2
2
i 1,2,3,4
A
(1)
3
2
( 0 ) . A ( 0 ) .T0 2
3
0
a pq 4 a 23
1
0
1
0
0
0
2
2
2
2
0
p2 q3
0
2
2
2
2
0
0
0
0
1
2
2
2
2
1
4
4
1
0
5 2
2
5 2
2
0
5 2 5 2
2
2
a -a
33 22 0
8
A (2)
t 1
Q (1) (0) .Q (0) (0)
cs
1
2
3 1 0 0
1 3 0 0
1.A (1) .1T
0
0 5 5
0 5 5
0
Q (2) 1.Q (1)
2
2
0
0
2
2
0
0
2
2
2
2
2
2
2
2
0
0
2
2
0
0
2
2
A( 3)
A( 4 )
3 1 0 0
1 3 0 0
( 2) . A ( 2) .T2
3
0 0 0
0
0
0
10
4 0
0 2
0
0
0
0
0
0 0
0 0
0 10
0
Q (4) 3 .Q (3)
Eigenvecto rs (column of Q (4) ).
Q (3) (2) .Q (2)
1
1
1
2 2 2
1
1
1
2
2
2
1 1 1
2
2 2
1 1
1
2 2
2
1
2
1
2
1
2
1
2
Power Method
4 1 1
A 1 3 2
1 2 3
has the dominant eigenvalue 1 6 and associated
v (1) (1,-1,1)t
The procedure outline above obtaining 2
proceeds as follows :
y0 (1,0,0) y1 A. y0 (4,1, 1)
T
y1
4
T
(11) 4 z1 1,0.25, 0.25T
y2 A.z1 (5, 3.5, 3.5)T
y2
5 (12 ) 5
z 2 1, 0.7, 0.7
T
y3 A.z 2 (5.4, 4.5, 4.5)T
y3
(13) 5.4 z3 1,0.833, 0.8333T
y4 A.z3 (5.666, 5.1666, 5.1666)T
y4
5.666 (14 ) 5.666
z 4 1,0.911, 0.911
T
5.4
.......... .......... .......... .......... .......... .......... .......
y10 A.z9 (5.988, 5.978, 5.97)T
y10
(110 ) 5.988
z10 1, 0.997, 0.997
T
Let
1 6 and v (1) (1, 1, 1)T
5.988
• Theorem: Suppose that λ1, λ2 … λn are eigenvalues of
A with associated eigenvectors V(1), V(2),…,V(n) , and
λ1 has multiplicity one. If x is any vector with the
property that XtV(1)=1, then
B = A - λ1V(1)Xt
Has eigenvalues 0, λ2 … λn with associated
eigenvectors V(1), W(2),…,W(n) , where V(i) and W(i) are
related the equation
V(i) = (λi- λ1 ).W(i) + λ1(Xt.W(i))V(1)
For each i = 2,3,…,n
• A particularly useful deflation technique, called the Wielandt’s
deflation procedure, results by defining
x
1
1vi1
ai1
a
i2
.
a
in
1
Where vi is a coordinate of V(1) which is nonzero, and the
values ai1, ai2, …, ain are the entries in the ith row of A.
With this definition, we have
n
1
1
xt v (1) (1) ai1 , a i2 , ..., a in (v1(1) , v2(1) ,..., vn(1) ) (1) aij v (j1)
1vi
1vi j 1
•Where the sum is the ith coordinate of the product AV(1). Since
AV(1)=V(1), this implies that
1
x v (1) (1vi(1) ) 1
1vi
t (1)
The ith row of B = A - λ1V(1)Xt consists entirely of zero entries.
The matrix B can be replace by an (n-1)x(n-1) matrix B’ that is
obtained by deleting the ith row and column from B.
B’ will have eigenvalues λ2, λ3 … λn . If | λ2 | > | λ3 |, The power
method can be reapplied to the matrix B’ to determine this new
dominant eigenvalues and an eigenvetors.
4 1 1
A 1 3 2
1 2 3
v (1) (1,-1,1)t
The procedure outline above obtaining 2 proceeds as follows
4
1
2
x 1
6
3
1
1
2
(1) t
v x 1
3
1
1
6
1
6
1
6
t
2
3
1 2
6 3
2
3
1
6
1
6
1
6
1
6
1
6
1
6
and B A - 1v (1) x t
0 0
3 2
- 3 - 1
2
3
4
1
1
2
1 3 2 6
3
1 2 3 2
3
0
- 1
2
1
6
1
6
1
6
1
6
1
6
1
6
2 1
Deleting the first row and column gives B
1
2
'
Which has eigenvalues λ2 = 3 and λ3 = 1. For λ2 = 3 the
eigenvector, W(2)’ , can be obtained by solving the second
order linear system
(B’ – 3I)W(2)’ = 0
Resulting in
W(2)’ = (1, -1)t
Thus, W(2) = (0, 1, -1)t and, from equation
V(i) = (λi- λ1 ).W(i) + λ1(Xt.W(i))V(1)
V(2) =(3-6).(0,1,-1)t + 6((2/3,-1/6,1/6).(0, 1, -1)t)(1,-1,1)t
=(-2,-1,1)t
W(3)’ = (1, 1)t
W(3) = (0, 1, 1)t
V(3) =(1-6).(0,1,1)t + 6((2/3,-1/6,1/6).(0, 1, 1)t)(1,-1,1)t
=(0, -4, 4)t
Power and deflation method
6
2
A
1
1
1
4 1 0
1 4 1
0 1 3
2
1
y0 (1,1,1,1)T y1 A. y0 (8,7,5,1)T
y1 8 8 z1 1, 7 , 5 , 1 1, 0.875, 0.625, 0.125
8 8 8
y2 A.z1 (8.25, 6.125, 4.25, 1.25)T y2 8.25 (12) 8.25
(1)
1
T
T
z2 1, 0.7424, 0.5151, 0.1515
T
y3 A.z2 (8.1514, 5.4847, 3.954, 0.9696)T
y3
8.1514
8.1514 z3 1, 0.6728, 0.485107, 0.24163
( 3)
1
T
y4 A.z3 (8.0724, 5.1765, 3.8549, 2.21)T
y4
1( 4) 8.072
z4 1, 0.64125, 0.4775, 0.27377
T
y5 A.z4 8.03381, 5.04254, 3.82518, 2.29885
T
y5
8.03381
1(5) 8.03
z5 1, 0.627, 0.476, 0.2861
T
Let 1 8 and v
(1)
1, 0.627, 0.476, 0.2861
T
8.072
Deflation method for
2 ?
Find x t .v (1) 1
3
ai1
6
4
a
2
14
1
1
i
2
.
x
.
with v i(1) 1
(1)
1
ai 3
8 1
i .v i
8
1
a
1
i4
8
0.470
0.357
0.214
0.75
0.25
0.156
0.119
0.071
(1)
t
v .x
0.125
0.078
0.059
0.035
0.035
0.125 0.078 0.059
B A 1.v (1) .x t A 8.v (1) .x t
0
0
0
0
1.762
1.856
2.746
0.048
0.373
3.524
0.627
0.524
0.716
0.572
0.714
2.714
• Deleting the first row an column gives
2.746
B' 0.373
0.627
0.048
3.524
0.524
0.572
0.714
0.714
© Copyright 2026 Paperzz