Eigenvalues and Eigenvectors • A(nxn) has precisely n, not necessarily distinct eigenvalues. • That are the roots of p(λ) = det(λI-A) = 0 • In practice, p(λ) is difficult to obtain Localisation of the eigenvalues • Theorem (Hadamard-Gershgorin) : Let A an nxn matrix and Di denote the circle in the complex plane n with center aii and radius a j 1 ij ; that is j i n Di z C; Z aii aij i 1 j i 4 A 0 2 Let D3 2 0 Z C ; Z 4 Z C ; Z 2 Z C ; Z 9 D1 D2 1 1 1 9 2, 1, 2. Two eigenvalue s within D1 D2 and one within D3 ( A) max 1i 3 i , 7 ( A) 11 • Theorem: The eigenvalues of a real symmetric matrix A are real. • Theorem: If 1 , 2 , ..., n are the eigenvalue s of the matrix A we have 1 2 ... n trace( A) 1. 2. ... . n det( A) • Definition: Two nxn matrices A and B are said to be similar if a non-singular matrix S exists with A = S-1.B.S • Theorem: Suppose A and B are similar nxn matrices and λ is an eigenvalue of A, with associated eigenvector X. Then λ is also an eigenvalue of B and if A =S-1BS, then SX is an eigenvector associated with λ and the matrix B. • Definition: A set of vectors V (1) , V (2) , ..., V (n) is called orthogonal if (V (i) ) t V (j) 0 for all i j. If, in addition, (V (i) ) t V (i) 1 for all i 1, 2, ..., n, then the set is called orthonorma l. • Theorem: If A is a matrix and λ1, λ2, …, λk are distinct eigenvalues of A with associated eigenvectors x(1), x(2),…,x(k), then {x(1), x(2),…,x(k)}, is linearly independent. • Theorem: An orthogonal set of vectors that does not contain the zero vector is linearly independent. • Definition: An nxn matrix P is said to be an orthogonal matrix if P-1 = Pt. • Corollary: If A is a symmetric nxn matrix, then there exist n eigenvectors of A that form an orthonormal set. • If A is an nxn symmetric matrix, then there exists an orthogonal matrix P such that D = P-1AP where D is a diagonal matrix whose diagonal entries are the eigenvalues of A. The algebraic eigenvalue problem • Let A be a nxn matrix. Find A.x = λ.x where λ:scalar and x a vector. • det(A- λ.I) X = 0 2 0 0 A 2 2 1 , det( A .I ) 3 6.2 11. 6 0 1 1 2 1 1, 2 2, 3 3 Eigenvectors: 1 0 0 1 0 0 P 1 1 1 and D 0 2 0 1 2 1 0 0 3 with D P 1. A.P Eigenvalues of symmetric tridiagonal matrices Sturm sequences • The matrix A=(aij) is tridiagonal if aij = 0 if |i-j|>1 • Example: a1 b 2 0 A . . 0 b2 0 . . a2 b3 . . b3 a3 b4 . . . . . . . bn 1 an 1 . . 0 bn and aij=aji 0 . . 0 bn an Sturm sequences P0 ( ) 1 P1 ( ) (a1 ) P2 ( ) (a2 ).P1 ( ) b22 .P0 ( ) for r 1, 2,..., (n 1). Pr 1 ( ) (ar 1 ).Pr ( ) br21.Pr 1 ( ) Example : 1 2 A 0 0 2 0 0 1 2 0 2 1 2 0 2 1 where a1 a2 a3 a4 1 and b 2 b 3 b 4 2 two roots [-1, 3] two roots [-3,5] 1 2.236 and 2 -2.236 3 4.236 and 4 -0.236 Jacobi Method (Eigenvalues and Eigenvectors) • Suppose that A = (aij) is a symmetric matrix. • Let Ω denote the first orthogonal matrix: . . 0 1 0 . 0 . . . c s . . s c . . . 0 0 . . . 0 1 • Select row p and column q for which apq ≠ 0 • Form the preliminary quantities a qq - a pp 2a pq ; t sign( ) ( 2 1) with sign( ) 1 if 0 sign( ) -1 if 0 and c 1 t 1 2 ; s ct • Start with A(0) = A, and Q(0) = I • Construct the sequence : A (k 1) k A (k) Tk ( k 1) (k ) Q k Q • Stop with A(k) is a diagonal matrix • D = Q.A.QT where D diagonal matrix • Q Eigenvectors matrix. Example 1 2 3 2 1 4 A 3 4 1 4 3 2 apq a14 4 4 3 2 1 Eigenvalue s : - 8 i 10 p 1 and q 4 t aqq a pp 2a pq 0 sign ( ) 1 1 c ( 2 1) (1/ 2 ) (t 2 1) (1/ 2 ) S ct sc 2 2 0 0 2 2 0 0 1 0 0 1 0 0 2 2 2 2 0 0 2 2 i 1,2,3,4 A (1) 3 2 ( 0 ) . A ( 0 ) .T0 2 3 0 a pq 4 a 23 1 0 1 0 0 0 2 2 2 2 0 p2 q3 0 2 2 2 2 0 0 0 0 1 2 2 2 2 1 4 4 1 0 5 2 2 5 2 2 0 5 2 5 2 2 2 a -a 33 22 0 8 A (2) t 1 Q (1) (0) .Q (0) (0) cs 1 2 3 1 0 0 1 3 0 0 1.A (1) .1T 0 0 5 5 0 5 5 0 Q (2) 1.Q (1) 2 2 0 0 2 2 0 0 2 2 2 2 2 2 2 2 0 0 2 2 0 0 2 2 A( 3) A( 4 ) 3 1 0 0 1 3 0 0 ( 2) . A ( 2) .T2 3 0 0 0 0 0 0 10 4 0 0 2 0 0 0 0 0 0 0 0 0 0 10 0 Q (4) 3 .Q (3) Eigenvecto rs (column of Q (4) ). Q (3) (2) .Q (2) 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 2 1 2 1 2 1 2 Power Method 4 1 1 A 1 3 2 1 2 3 has the dominant eigenvalue 1 6 and associated v (1) (1,-1,1)t The procedure outline above obtaining 2 proceeds as follows : y0 (1,0,0) y1 A. y0 (4,1, 1) T y1 4 T (11) 4 z1 1,0.25, 0.25T y2 A.z1 (5, 3.5, 3.5)T y2 5 (12 ) 5 z 2 1, 0.7, 0.7 T y3 A.z 2 (5.4, 4.5, 4.5)T y3 (13) 5.4 z3 1,0.833, 0.8333T y4 A.z3 (5.666, 5.1666, 5.1666)T y4 5.666 (14 ) 5.666 z 4 1,0.911, 0.911 T 5.4 .......... .......... .......... .......... .......... .......... ....... y10 A.z9 (5.988, 5.978, 5.97)T y10 (110 ) 5.988 z10 1, 0.997, 0.997 T Let 1 6 and v (1) (1, 1, 1)T 5.988 • Theorem: Suppose that λ1, λ2 … λn are eigenvalues of A with associated eigenvectors V(1), V(2),…,V(n) , and λ1 has multiplicity one. If x is any vector with the property that XtV(1)=1, then B = A - λ1V(1)Xt Has eigenvalues 0, λ2 … λn with associated eigenvectors V(1), W(2),…,W(n) , where V(i) and W(i) are related the equation V(i) = (λi- λ1 ).W(i) + λ1(Xt.W(i))V(1) For each i = 2,3,…,n • A particularly useful deflation technique, called the Wielandt’s deflation procedure, results by defining x 1 1vi1 ai1 a i2 . a in 1 Where vi is a coordinate of V(1) which is nonzero, and the values ai1, ai2, …, ain are the entries in the ith row of A. With this definition, we have n 1 1 xt v (1) (1) ai1 , a i2 , ..., a in (v1(1) , v2(1) ,..., vn(1) ) (1) aij v (j1) 1vi 1vi j 1 •Where the sum is the ith coordinate of the product AV(1). Since AV(1)=V(1), this implies that 1 x v (1) (1vi(1) ) 1 1vi t (1) The ith row of B = A - λ1V(1)Xt consists entirely of zero entries. The matrix B can be replace by an (n-1)x(n-1) matrix B’ that is obtained by deleting the ith row and column from B. B’ will have eigenvalues λ2, λ3 … λn . If | λ2 | > | λ3 |, The power method can be reapplied to the matrix B’ to determine this new dominant eigenvalues and an eigenvetors. 4 1 1 A 1 3 2 1 2 3 v (1) (1,-1,1)t The procedure outline above obtaining 2 proceeds as follows 4 1 2 x 1 6 3 1 1 2 (1) t v x 1 3 1 1 6 1 6 1 6 t 2 3 1 2 6 3 2 3 1 6 1 6 1 6 1 6 1 6 1 6 and B A - 1v (1) x t 0 0 3 2 - 3 - 1 2 3 4 1 1 2 1 3 2 6 3 1 2 3 2 3 0 - 1 2 1 6 1 6 1 6 1 6 1 6 1 6 2 1 Deleting the first row and column gives B 1 2 ' Which has eigenvalues λ2 = 3 and λ3 = 1. For λ2 = 3 the eigenvector, W(2)’ , can be obtained by solving the second order linear system (B’ – 3I)W(2)’ = 0 Resulting in W(2)’ = (1, -1)t Thus, W(2) = (0, 1, -1)t and, from equation V(i) = (λi- λ1 ).W(i) + λ1(Xt.W(i))V(1) V(2) =(3-6).(0,1,-1)t + 6((2/3,-1/6,1/6).(0, 1, -1)t)(1,-1,1)t =(-2,-1,1)t W(3)’ = (1, 1)t W(3) = (0, 1, 1)t V(3) =(1-6).(0,1,1)t + 6((2/3,-1/6,1/6).(0, 1, 1)t)(1,-1,1)t =(0, -4, 4)t Power and deflation method 6 2 A 1 1 1 4 1 0 1 4 1 0 1 3 2 1 y0 (1,1,1,1)T y1 A. y0 (8,7,5,1)T y1 8 8 z1 1, 7 , 5 , 1 1, 0.875, 0.625, 0.125 8 8 8 y2 A.z1 (8.25, 6.125, 4.25, 1.25)T y2 8.25 (12) 8.25 (1) 1 T T z2 1, 0.7424, 0.5151, 0.1515 T y3 A.z2 (8.1514, 5.4847, 3.954, 0.9696)T y3 8.1514 8.1514 z3 1, 0.6728, 0.485107, 0.24163 ( 3) 1 T y4 A.z3 (8.0724, 5.1765, 3.8549, 2.21)T y4 1( 4) 8.072 z4 1, 0.64125, 0.4775, 0.27377 T y5 A.z4 8.03381, 5.04254, 3.82518, 2.29885 T y5 8.03381 1(5) 8.03 z5 1, 0.627, 0.476, 0.2861 T Let 1 8 and v (1) 1, 0.627, 0.476, 0.2861 T 8.072 Deflation method for 2 ? Find x t .v (1) 1 3 ai1 6 4 a 2 14 1 1 i 2 . x . with v i(1) 1 (1) 1 ai 3 8 1 i .v i 8 1 a 1 i4 8 0.470 0.357 0.214 0.75 0.25 0.156 0.119 0.071 (1) t v .x 0.125 0.078 0.059 0.035 0.035 0.125 0.078 0.059 B A 1.v (1) .x t A 8.v (1) .x t 0 0 0 0 1.762 1.856 2.746 0.048 0.373 3.524 0.627 0.524 0.716 0.572 0.714 2.714 • Deleting the first row an column gives 2.746 B' 0.373 0.627 0.048 3.524 0.524 0.572 0.714 0.714
© Copyright 2025 Paperzz