Depth-first Search in Digraphs — examples denotes a tree edge. d(v), f(v) appears above or below each node v: d(v) = discovery time of node v. The time at which node v is first reached. The time of preorder processing. f(v) = finish time of node v. The time at which node v is exited for the last time. The time of postorder processing. For a node v, active(v) = time interval d(v) to f(v) (inclusive). Example 1: In this particular depth-first search, the alphabetically-first node is chosen, whenever an arbitrary choice is made. 2,29 1,34 A 14,27 E 3,12 B D 30,33 31,32 F C 13,28 H 17,22 G L 16,23 19,20 J K 18,21 N O 8,9 I 15,26 5,10 Q 24,25 M 4,11 P 6,7 Example 2: Depth-first search of the same digraph. The alphabetically-last node is chosen, whenever an arbitrary choice is made. 4,33 26,31 A 24,25 E 9,10 B D 27,30 28,29 F C 5,32 H 16,17 G L 15,18 14,19 J K 13,22 N O 1,34 I 20,21 7,8 Q 12,23 M 6,11 P 2,3 Example 3: Depth-first search of the same digraph. In choosing among adjacent vertices not yet discovered, the alphabeticallyfirst vertex is chosen. However, we choose H as the starting vertex, and when the stack becomes empty (which didn’t occur in Example 1 or 2), we choose E, then P, and then D as the next vertex to discover. 21,30 23,28 A 13*,14 E 17*,34 B D 24,27 25,26 F C 18,33 N 22,29 20,31 I 1*,12 H 3,8 G L 2,9 J K 4,7 O Q 10,11 M 5,6 19,32 P 15*,16 Depth-first Search in Digraphs — edges classified Edge (u,v) is a tree edge if active(u) ⊃ active(v), and there is no vertex x with active(u) ⊃ active(x) ⊃ active(v), a forward edge if active(u) ⊃ active(v), but (u,v) is not a tree edge, a back edge if active(u) ⊂ active(v), a cross edge if active(u) ∩ active(v) = ∅ (in which case active(v) entirely precedes active(u). denotes a tree edge. denotes a back edge. denotes a forward edge. denotes a cross edge. In an undirected graph, these two types are not distinguishable Here depth-first search of Example 1, with edges classified. 1,28 0,33 A 13,26 E 2,11 B D 29,32 30,31 F C 12,27 H 16,21 G L 15,22 18,19 J K 17,20 N O 7,8 I 14,25 4,9 Q 23,24 M 3,10 P 5,6
© Copyright 2026 Paperzz