Linear Programming Assignment Problem ___________________________________________________________________________ Operations Research Jan Fábry Linear Programming Applications Assignment Problem employees projects jobs service teams doctors Assignment „1 to 1“ jobs managers machines cars night shifts Objective: maximize the effect of assignment ___________________________________________________________________________ Operations Research Jan Fábry Linear Programming Applications Assignment Problem Example – Prague Build, Inc. Excavating shafts for basements (Michle, Prosek, Radlice, Trója) Each excavation takes 5 days 4 excavators stored in 4 separated garages (everyday‘s movement) One excavator to one destination Distances between garages and destinations Objective: minimize total distance necessary for all movements ___________________________________________________________________________ Operations Research Jan Fábry ___________________________________________________________________________ Operations Research Jan Fábry Linear Programming Applications Assignment Problem Example – Prague Build, Inc. Distances Michle Prosek Radlice Trója Garage 1 5 22 12 18 Garage 2 15 17 6 10 Garage 3 8 25 5 20 Garage 4 10 12 19 12 ___________________________________________________________________________ Operations Research Jan Fábry Linear Programming Applications Assignment Problem Example – Prague Build, Inc. Decision variables Michle Prosek Radlice Trója Garage 1 x11 x12 x13 x14 Garage 2 x21 x22 x23 x24 Garage 3 x31 x32 x33 x34 Garage 4 x41 x42 x43 x44 ___________________________________________________________________________ Operations Research Jan Fábry Linear Programming Applications Assignment Problem Example – Prague Build, Inc. Decision variables xij = 1 if the excavator from the garage i goes to the destination j 0 otherwise Binary variable ___________________________________________________________________________ Operations Research Jan Fábry Linear Programming Applications Assignment Problem Example – Prague Build, Inc. Optimal solution Michle Prosek Radlice Trója Garage 1 1 0 0 0 Garage 2 0 0 0 1 Garage 3 0 0 1 0 Garage 4 0 1 0 0 ___________________________________________________________________________ Operations Research Jan Fábry Linear Programming Applications Assignment Problem Example – Prague Build, Inc. Optimal solution 1 movement Michle Prosek Radlice Trója Garage 1 5 km - - - Garage 2 - - - 10 km Garage 3 - - 5 km - Garage 4 - 12 km - - Minimal total distance 320 km ___________________________________________________________________________ Operations Research Jan Fábry ___________________________________________________________________________ Operations Research Jan Fábry Network Models ___________________________________________________________________________ Operations Research Jan Fábry Network Models Network Nodes Arcs UNDIRECTED DIRECTED j i UNDIRECTED NETWORK j i DIRECTED NETWORK ___________________________________________________________________________ Operations Research Jan Fábry Network Models Path Sequence of arcs in which the initial node of each arc is identical with the terminal node of the preceding arc. 3 7 5 ___________________________________________________________________________ Operations Research Jan Fábry Network Models Path 2 1 5 2 11 4 3 5 4 6 3 6 Open Path ___________________________________________________________________________ Operations Research Jan Fábry Network Models Circuit (Cycle) Path starting and ending in the same node (closed path). 2 1 1 5 2 5 1 4 3 3 4 6 6 ___________________________________________________________________________ Operations Research Jan Fábry Network Models Connected Network There is a path connecting every pair of nodes in the network. 2 1 5 2 1 4 3 3 5 4 6 6 ___________________________________________________________________________ Operations Research Jan Fábry Network Models Unconnected Network 2 1 5 2 1 4 3 3 5 4 6 6 ___________________________________________________________________________ Operations Research Jan Fábry Network Models Tree Connected network without any circuit. 2 3 3 2 4 4 6 3 4 5 4 1 Exactly 6 arcs (n-1) Removing 1 arc Adding 1 arc 7 Unconnected network Circuit in the network ___________________________________________________________________________ Operations Research Jan Fábry Network Models Tree STAR „CHRISTMAS“ TREE SNAKE ___________________________________________________________________________ Operations Research Jan Fábry Network Models Spanning Tree Tree including all the nodes from the original network. 2 1 5 2 1 4 3 3 5 4 6 6 ___________________________________________________________________________ Operations Research Jan Fábry Network Models Evaluated Network Values - distance - time - cost - capacity yij Arcs i j Nodes i yi j yj ___________________________________________________________________________ Operations Research Jan Fábry Network Models Basic Network Applications Shortest Path Problem Traveling Salesperson Problem (TSP) Minimal Spanning Tree Maximum Flow Problem Project Management Critical Path Method (CPM) Program Evaluation Review Technique (PERT) ___________________________________________________________________________ Operations Research Jan Fábry Network Models Shortest Path Problem ___________________________________________________________________________ Operations Research Jan Fábry Network Models Shortest Path Problem Shortest path between 2 nodes 2 14 1 1 18 5 2 23 12 30 10 4 15 25 3 5 3 4 15 6 16 6 ___________________________________________________________________________ Operations Research Jan Fábry Network Models Shortest Path Problem Shortest Paths Between All Pairs of Nodes 1 2 3 4 5 6 1 2 3 4 14 24 26 14 10 12 24 10 15 26 12 15 - 32 18 28 23 40 26 16 15 5 6 32 40 18 26 28 16 23 15 30 30 - ___________________________________________________________________________ Operations Research Jan Fábry Network Models Traveling Salesperson Problem ___________________________________________________________________________ Operations Research Jan Fábry Network Models Traveling Salesperson Problem (TSP) 2 Home city 1 11 14 18 5 2 23 12 30 10 4 15 25 3 5 3 Shortest tour 4 15 6 16 6 110 km ___________________________________________________________________________ Operations Research Jan Fábry Network Models Minimal Spanning Tree ___________________________________________________________________________ Operations Research Jan Fábry Network Models Minimal Spanning Tree Example - Exhibition Exhibition area with 9 locations that need electricity power Use cable for extensions Price of cable = 10 CZK / 1 m Objective: minimize the cost of all the extensions ___________________________________________________________________________ Operations Research Jan Fábry Network Models Minimal Spanning Tree Example - Exhibition 85 2 2 88 Power 7 7 76 1 90 75 60 63 9 5 55 80 3 3 43 8 74 68 52 9 70 5 40 61 54 8 35 10 10 4 4 120 6 ___________________________________________________________________________ Operations Research Jan Fábry 71 6 Network Models Minimal Spanning Tree Optimum 490 m Example - Exhibition 4 900 CZK 2 2 7 7 Power 61 76 1 9 9 5 5 40 3 52 43 8 3 60 55 68 8 35 10 4 4 10 6 6 ___________________________________________________________________________ Operations Research Jan Fábry Network Models Maximum Flow Problem Input Capacited network Source 7 9 Gas Fluid Traffic Information People 3 Sink Output ___________________________________________________________________________ Operations Research Jan Fábry Network Models Maximum Flow Problem UNDIRECTED ARC i DIRECTED ARC j i j Flow Flow Capacity ___________________________________________________________________________ Operations Research Jan Fábry Network Models Maximum Flow Problem Mathematical Model Flow through each arc Capacity of the arc Quantity flowing out = Quantity flowing into (except the source and the sink) Total flow into the source = 0 Total flow out of the sink = 0 Total flow out of the source = Total flow into the sink ___________________________________________________________________________ Operations Research Jan Fábry Network Models Maximum Flow Problem Example – White Lake City The city is situated on the edge of a small lake To minimize disruptive effects of possible flood Reconstruction of drain system 2 alternatives - Northern Channel & Southern Channel Objective: maximizing the quantity of water being pumped in one hour ___________________________________________________________________________ Operations Research Jan Fábry Northern Channel 740 2 900 800 300 270 370 1100 5 8 410 700 3 280 7 550 400 300 4 720 130 6 220 Lake 1510 Reservoir 780 2 6 1050 800 470 3 520 230 370 800 1400 840 4 8 250 660 290 700 5 420 7 Southern Channel ___________________________________________________________________________ Operations Research Jan Fábry Northern Channel 610 1 930 m3 610 22 55 100 1 1100 Optimum 300 410 700 33 88 300 76 220 390 300 44 1500 9 220 67 130 ___________________________________________________________________________ Operations Research Jan Fábry Southern Channel Optimum 2 450 m3 780 22 66 780 470 1050 470 33 9 200 1 800 400 1400 840 44 88 250 210 55 360 150 7 ___________________________________________________________________________ Operations Research Jan Fábry
© Copyright 2026 Paperzz