Exercise Chapter 3
1. For the function ๐ฆ = ๐(๐ฅ) below, find all relative maximum points and minimum points
by applying the first derivative test. Then, determine the intervals where ๐(๐ฅ) is
increasing and decreasing.
i)
๐(๐ฅ) = ๐ฅ 2 โ 2๐ฅ โ 24
ii)
๐(๐ฅ) = ๐ฅ 3 โ 3๐ฅ
2. Find (a) the intervals of increase or decrease, (b) the local maximum and minimum
values, (c) the intervals of concavity, and (d) the inflection points. (e) sketch the graph.
i)
๐(๐ฅ) = 2๐ฅ 3 โ 3๐ฅ 2 โ 12๐ฅ
ii)
๐(๐ฅ) = ๐ฅ 4 โ 6๐ฅ 2
iii)
๐(๐ฅ) = 3๐ฅ 5 โ 5๐ฅ 3 + 3
3. Sketch a graph of a rational function and label the coordinates of the stationary points and
inflection points. Show the horizontal and vertical asymptotes and label them with their
equations. Label points, if any, where the graph crosses horizontal asymptotes.
๐ฅ
i)
๐ฆ = ๐ฅโ1
ii)
๐ฆ = ๐ฅ 2 +9
iii)
๐ฆ=
iv)
๐ฆ =๐ฅ +4
v)
๐ฆ=
๐ฅ
๐ฅ2
๐ฅ+8
2
2๐ฅ 3 +๐ฅ 2 +1
๐ฅ 2 +1
2i
2ii
3ii
3iii
2iii
3i
3iv
3v
1.
Find the critical numbers and the relative extrema for the functions, if any:
(a) y ๏ฝ x 3 ๏ญ 3x ๏ซ 3
{ans: x=-1, 1, rel max (-1,5), rel min (1,1) }
2
(b) y ๏ฝ 2 x ๏ญ 3x 3
{ans: none}
(c) y ๏ฝ x 8 ๏ญ x 2
(ans: x=-2,2, rel max at (2,4), rel min at (-2,-4)}
(d) y ๏ฝ
x2 ๏ญ 3
x๏ญ2
{ans: x=1, 2, 3, rel max (1,2), rel min (3,6) }
(e) y ๏ฝ x 2 ๏ญ 1
{ans: x=0, rel max (0,1)
1
3
(f) y ๏ฝ x ๏จx ๏ซ 3๏ฉ 3
2.
2
{ans: x=0, -3, no rel extrema}
For each of the given function;
i) find the x and y intercepts (if any).
ii) all the asymptotes (if any)
iii) the interval of increase and decrease
iv) local maximum / local minimum
v) interval of concavity
vi) inflection point (if any)
vii) sketch the function completely.
(b) f ๏จx ๏ฉ ๏ฝ ๏ญ2 x 3 ๏ซ 6 x 2 ๏ญ 3
f ( x) ๏ฝ 9 x 3 ๏ญ 4 x 4
(a)
y
f(x)=-2x^3+6x^2-3
9
y
8
f(x)=9x^3-4x^4
9
7
8
6
7
5
6
4
5
3
4
2
3
1
2
x
-9
1
x
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
7
8
-8
-7
-6
-5
-4
-3
-2
-1
1
-1
9
-2
-1
-3
-2
-3
-4
-4
-5
-5
-6
-6
-7
-7
-8
-8
-9
-9
2
3
4
5
6
7
8
9
(c) f ๏จ x ๏ฉ ๏ฝ
1 ๏ซ 2x
๏จ1 ๏ญ x ๏ฉ
x3 ๏ญ1
x2 ๏ญ 9
(d) f ๏จx ๏ฉ ๏ฝ
2
y
f(x)=(1+2x)/(1-x)^2
9
y
f(x)=((x^3)-1)/((x^2)-9)
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
x
x
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
7
8
-9
9
-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
5
-1
-1
-2
-2
-3
-3
-4
-4
-5
-5
-6
-6
-7
-8
-7
-9
-8
-9
A curve has the equation y ๏ฝ x 3 ๏ซ ax 2 ๏ซ bx ๏ซ c . The curve cuts the y-axis at
3.
7
y ๏ฝ ๏ญ13 and has stationary points at x ๏ฝ ๏ญ1 and x ๏ฝ ๏ญ .
3
(a)
Find the values of a, b and c.
{ans: a=5, b=7, c=-13}
(b)
Find the inflection points
{ans: x=-5/3}
(c)
Sketch the graph of y.
y
f(x)=x^3 + 5 x^2 +7x -13
25
20
15
10
5
x
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
-5
-10
-15
-20
-25
2
3
4
5
6
7
8
9
6
7
8
9
Question
1. Find the critical points for the curve
a. ๐ฆ = ๐ฅ 3 + 7๐ฅ 2 โ 5๐ฅ + 2
b. ๐(๐ฅ) = โ๐ฅ 2 โ 9
c. ๐ฅ 2 + 2๐ฆ 2 โ 2๐ฅ + 8๐ฆ โ 9 = 0
2
3 5
d. ๐ฆ = ๐ฅ 3 โ 6๐ฅ 3
5
2
e. ๐ฆ = (๐ฅ 2 โ 16)3
2. Given ๐ฆ = 3๐ฅ 4 โ 4๐ฅ 3 . Find if exist, the maximum and minimum points using the first
derivative test.
3
3. A curve is given by the function ๐(๐ฅ) = โ๐ฅ โ 3.
a. Find the first and second derivative of ๐.
b. Find the coordinates ot the critical point(s).
c. Determine the nature of the points whether they are maximum, minimum or point
of inflection.
4. For the function ๐(๐ฅ) = ๐ฅ 4 โ 8๐ฅ 2 , find
a. the stationary points.
b. the intervals where ๐ is increasing or decreasing.
c. the relative maximum and minimum points.
d. the intervals where ๐ is concave upwards and ๐ is concave downwards.
e. The points of inflection.
Hence sketch the graph of ๐(๐ฅ).
5. Sketch the graph of
1
a. ๐ฆ = 4๐ฅ 2 +
b. ๐ฆ =
c. ๐ฆ =
d. ๐ฆ =
๐ฅ 2 +1
๐ฅ 2 โ9
2๐ฅ
9 โ ๐ฅ2
2๐ฅ 2
๐ฅ 2 +4
๐ฅ
ANSWERS
1
a
b
c
d
e
2
3
a
b
1 31
( , ) , (โ5,77)
3 27
(3,0), (โ3,0)
(1,5), (1,1), (1 โ 3โ2, โ2) , (1 + 3โ2, โ2)
(0,0); maximum, (4, โ9.071)minimum
(โ4,0); minimum, (4,0); minimum , (0, 6.352); maximum
No relative extremum at ๐ฅ = 0. (1,-1) is a minimum point.
1
2
โฒ
๐ โฒ (๐ฅ) =
2 , ๐โฒ (๐ฅ) =
5
3(๐ฅ โ 3)3
9(๐ฅ โ 3)3
(3,0)
4
c
a
b
c
d
e
5
a
b
c
d
No extremum point. Inflection point: (1,0)
(0,0), (2, โ16), (โ2, โ16)
Increasing: (โ2,0) โช (2, +โ) ; Decreasing: (โโ, โ2) โช (0,2)
Relative maximum:(0,0) , Relative minimum:(2,-16) and (โ2, โ16)
2
2
2
2
Concave up: (โโ, โ ) โช ( , +โ) , Concave down: (โ , )
โ3
โ3
โ3 โ3
2
896
(±
,โ
)
81
โ3
1) Find the intervals where the function is increasing and decreasing.
1
i)
[Ans: increasing on ๏จ ๏ญ๏ฅ,3๏ ๏ ๏3, ๏ฅ ๏ฉ ]
f ๏จ x ๏ฉ ๏ฝ x3 ๏ญ 3x 2 ๏ซ 9 x ๏ซ 20
3
1
ii)
[Ans: increasing ๏จ ๏ญ๏ฅ, ๏ญ1๏ฉ ๏ ๏จ1, ๏ฅ ๏ฉ , decreasing ๏จ ๏ญ1,0๏ฉ ๏ ๏จ 0,1๏ฉ ]
f ๏จ x๏ฉ ๏ฝ 1๏ญ 2
x
iii)
[Ans: increasing ๏จ 3,๏ฅ ๏ฉ , decreasing ๏จ ๏ญ๏ฅ,0๏ฉ ๏ ๏จ 0,3๏ฉ ]
f ๏จ x ๏ฉ ๏ฝ x4 ๏ญ 4 x3 ๏ซ 10
2) Find the critical points for the following functions.
t
t ๏ญ1
i)
h ๏จt ๏ฉ ๏ฝ
ii)
f ๏จ x ๏ฉ ๏ฝ 6 x5 ๏ซ 33x4 ๏ญ 30x3 ๏ซ 100
iii)
g ๏จ t ๏ฉ ๏ฝ 3 t 2 ๏จ 2t ๏ญ 1๏ฉ
[Ans: t ๏ฝ 0 and t ๏ฝ 1]
3
and t ๏ฝ 1]
5
1
[Ans: t ๏ฝ 0, t ๏ฝ ]
5
[Ans: x ๏ฝ ๏ญ5, x ๏ฝ 0, x ๏ฝ
3) Determine where the function is concave upward and concave downward.
2
5
i)
[Ans: concave up ๏จ1,๏ฅ ๏ฉ , concave down ๏จ ๏ญ๏ฅ,1๏ฉ ]
f ๏จ x ๏ฉ ๏ฝ ๏จ x ๏ญ 1๏ฉ 3
3
1
ii)
[Ans: concave up ๏จ ๏ญ๏ฅ,0๏ฉ ๏ ๏จ 0, ๏ฅ ๏ฉ ]
g ๏จ x๏ฉ ๏ฝ x ๏ซ 2
x
4) Sketch the graph of
i)
g ๏จ x ๏ฉ ๏ฝ 4 ๏ญ 3x ๏ญ 2 x 3
Ans:
y
f(x)=4-3x-2(x^3)
9
8
7
6
5
4
3
2
1
x
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
-1
-2
-3
-4
-5
-6
-7
-8
-9
2
3
4
5
6
7
8
9
g ๏จ x๏ฉ ๏ฝ
ii)
1
x๏ญ x
2
Ans:
y
f(x)=((1/2)*x)-(x^(1/2))
9
8
7
6
5
4
3
2
1
x
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
7
8
9
-1
-2
-3
-4
-5
-6
-7
-8
-9
h ๏จ x๏ฉ ๏ฝ
iii)
3 4
x ๏ญ 2 x3 ๏ญ 6 x 2 ๏ซ 8
2
Ans:
y
f(x)=(3/2)(x^4)-2(x^3)-6(x^2)+8
9
8
7
6
5
4
3
2
1
x
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
7
8
-1
-2
-3
-4
-5
-6
-7
-8
-9
f ๏จ x๏ฉ ๏ฝ
iv)
3x
x ๏ญ x๏ญ6
2
Ans:
y
f(x)=(3x)/((x^2)-x-6)
9
8
7
6
5
4
3
2
1
x
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
-1
-2
-3
-4
-5
-6
-7
-8
-9
2
3
4
5
6
7
8
9
9
v)
g ๏จt ๏ฉ ๏ฝ 2 ๏ซ
5
๏จt ๏ญ 2๏ฉ
2
Ans:
y
f(x)=2+(5/(x-2)^2)
9
8
7
6
5
4
3
2
1
x
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
7
8
9
-1
-2
-3
-4
-5
-6
-7
-8
-9
vi)
x3 ๏ญ x
g ๏จ x๏ฉ ๏ฝ
x ๏จ x ๏ซ 1๏ฉ
Ans:
y
f(x)=((x^3)-x)/(x*(x+1))
9
8
7
6
5
4
3
2
1
x
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
7
8
-1
-2
-3
-4
-5
-6
-7
-8
-9
5) Determine the relative extrema of the function f ๏จ x ๏ฉ ๏ฝ x3 ๏ญ 3x2 ๏ญ 24x ๏ซ 32 .
[Ans: relative maximum: f ๏จ ๏ญ2 ๏ฉ ๏ฝ 60 , relative minimum: f ๏จ 4 ๏ฉ ๏ฝ ๏ญ48 ]
9
6) Sketch the graph of a function having the following properties:
f ๏จ ๏ญ1๏ฉ ๏ฝ 4
f ๏จ 0๏ฉ ๏ฝ 2
f ๏จ1๏ฉ ๏ฝ 0
f ๏ข ๏จ ๏ญ1๏ฉ ๏ฝ 0
f ๏ข ๏จ x ๏ฉ ๏พ 0 ๏ฎ on ๏จ ๏ญ๏ฅ, ๏ญ1๏ฉ ๏ ๏จ1, ๏ฅ ๏ฉ
f ๏ข ๏จ x ๏ฉ ๏ผ 0 ๏ฎ on ๏จ ๏ญ1,1๏ฉ
f ๏ข๏ข ๏จ x ๏ฉ ๏ผ 0 ๏ฎ on ๏จ ๏ญ๏ฅ, 0 ๏ฉ
f ๏ข๏ข ๏จ x ๏ฉ ๏พ 0 ๏ฎ on ๏จ 0, ๏ฅ ๏ฉ
Ans:
f(x)
(-1,4)
(0,2)
x
(1,0)
Question
1.
Identify critical points and find the maximum and minimum value on the given interval I.
f(x) = ๐ฅ 2 + 2x; I =[ , ]
2 2
b)
r(ฮธ) = 2 cos ๐; I = [
c)
2.
3 1
a)
2
3
4
, ]
3
g(t) =[๐ก ] ; I = [-1, 8]
Sketch the graph
a)
f ๏จ x ๏ฉ ๏ฝ x 2 ๏จ x ๏ญ 1๏ฉ ๏จ x ๏ซ 1๏ฉ
b)
f ๏จx ๏ฉ ๏ฝ 2 x 3 ๏ญ 3x 2 ๏ซ 12 x ๏ซ 50
2
3.
โ๐ ๐
2
For each of the given function;
i) find the x and y intercepts (if any).
ii) all the asymptotes (if any)
iii) the interval of increase and decrease
iv) local maximum / local minimum
v) interval of concavity
vi) inflection point (if any)
vii) sketch the function completely.
1๏ซ x
1๏ญ x
(a)
f ( x) ๏ฝ
(b)
f ๏จ x ๏ฉ ๏ฝ 4 x ๏ญ 3x 3
(c)
f ๏จx ๏ฉ ๏ฝ
4
1 ๏ซ 2x
๏จ1 ๏ญ x ๏ฉ2
3
1
5
Critical points: - 2, - 1, 2 ; maximum value 4 ; minimum value - 1
answers: 1a)
๐
4
๐
3
1b)
Critical points: - , 0, ; maximum value 2; minimum value 1
1c)
Critical points: -1, 0, 8; maximum value 4; minimum value 0
Answer 2a
y
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
x
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
-0.8
-0.9
2
3
4
5
6
7
8
9
Answer 2b
y
100
90
80
70
60
50
40
30
20
10
x
-70
-65
-60
-55
-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
5
10
15
20
25
30
35
40
45
50
55
60
65
70
-10
-20
-30
y
9
8
7
6
5
4
3
2
1
x
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
7
8
9
-1
-2
-3
-4
-5
-6
-7
-8
-9
Answer 3a
y
12
10
8
6
4
2
x
-13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
-2
-4
-6
-8
-10
-12
Answer 3b
2
3
4
5
6
7
8
9
10
11
12
13
Answer 3c
y
9
8
7
6
5
4
3
2
1
x
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
7
8
9
-1
-2
-3
-4
-5
-6
-7
-8
-9
Question
1) Find the critical numbers and the relative extrema for the functions, if any:
a) ๐ฆ = 4๐ฅ 3 + 2๐ฅ 2
b) ๐ฆ = ๐ฅ 3 โ 3๐ฅ + 3
2
c) ๐ฆ = (๐ฅ โ 3) โ5
d) ๐ฆ = |๐ฅ 2 โ 1|
e) ๐ฆ = ๐ฅโ8 โ ๐ฅ 2
f) ๐ฆ =
๐ฅ 2 โ3
๐ฅโ2
2) The graph of f ' on (1, 6) is shown below. Find the intervals on which f is increasing or decreasing.
3) The graph of f ', the derivative of a function f, is shown below. Find the relative extrema of f.
4) The graph of f is shown below and f is twice differentiable. Which of the following statements is true:
A.
B.
C.
D.
E.
f(5) < f '(5) < f ''(5)
f ''(5) < f '(5) < f (5)
f '(5) < f (5) < f ''(5)
f '(5) < f ''(5) < f (5)
f ''(5) < f (5) < f '(5)
5)
INTERVAL
๐<๐
๐<๐<๐
๐<๐<๐
๐<๐<๐
๐<๐
SIGN OF ๐โฒ (๐)
โ
+
+
โ
โ
SIGN OF ๐โฒโฒ (๐)
+
+
โ
โ
+
A sign chart is presented for the first and second derivative of a function ๐. Assuming
that ๐ is continuous everywhere . Find
a) the interval on which ๐ is increasing and decreasing
b) the interval on which ๐ is concave up and down.
c) The ๐ฅ-coordinates of all inflection points
6) Find the absolute maximum and minimum values of ๐ on the closed interval, and state
where the values occur.
a) ๐(๐ฅ) = 4๐ฅ 2 โ 12๐ฅ + 10 ; [1,2]
b) ๐(๐ฅ) = (๐ฅ โ 2)3 ; [1,4]
๐) ๐(๐ฅ) =
3๐ฅ
โ4๐ฅ 2 + 1
; [โ1,1]
d) ๐(๐ฅ) = ๐ฅ โ 2๐ ๐๐๐ฅ ; [โ๐โ4 , ๐โ2]
e) ๐(๐ฅ) = 1 โ |9 โ ๐ฅ 2 | ; [1,2]
7) For each of the given function;
i) find the x and y intercepts (if any).
ii) all the asymptotes (if any)
iii) the interval of increase and decrease
iv) local maximum / local minimum
v) interval of concavity
vi) inflection point (if any)
vii) sketch the function completely.
๐) ๐(๐ฅ) = ๐ฅ 4 โ 3๐ฅ 3 + 3๐ฅ 2 + 1
3๐ฅ 2 โ 8
๐) ๐(๐ฅ) = 2
๐ฅ โ4
๐) ๐(๐ฅ) =
2๐ฅ โ ๐ฅ 2
๐ฅ2 + ๐ฅ โ 2
๐) ๐(๐ฅ) =
(๐ฅ โ 2)3
๐ฅ2
๐)๐(๐ฅ) = ๐ฅ
2โ 5
3( โ
2
๐ฅ)
๐) ๐(๐ฅ) = ๐ฅ โ4 โ ๐ฅ 2
๐) ๐(๐ฅ) = ๐ฅ 2 โ
1
๐ฅ
8)
A curve has the equation ๐ฆ = ๐ฅ 3 + ๐๐ฅ 2 + ๐๐ฅ + ๐. The curve cuts the y-axis at ๐ฆ =
7
โ13 and has stationary points at ๐ฅ = โ1 and ๐ฅ = โ 3.
9)
(a)
Find the values of a, b and c.
(b)
Find the inflection points
(c)
Sketch the graph of ๐
Let ๐(๐ฅ) = ๐ฅ 2 + ๐๐ฅ + ๐. Find the values of ๐ and ๐ such that ๐(1) = 3 is an extreme
value of ๐ on [0,2]. Is this value a maximum or minimum?
10)
Find the values of of ๐, ๐, ๐ and ๐ so that the function
๐(๐ฅ) = ๐๐ฅ 3 + ๐๐ฅ 2 + ๐๐ฅ + ๐
has relative minimum at (0,0) and relative maximum at (1,1).
Answer
1
a) 0, โ 3
b)
c)
d)
e)
f)
rel max (-1,5) and min (1,1)
3
rel. max (0,1)
rel max (2,4) and min (-2,-4)
rel. max (1,2) and min (3,6)
2. decreasing [1,2] โช [5,6], increasing [2,5]
3. rel. max x=-2, rel.min x=3
4.C
5. increasing [1.3], decreasing (โโ, 2] โช [3, +โ)
Concave up (โโ, 2) โช (4, +โ), concave down (2,4)
6.
a) max =2 at x=1,2, min =1 at x=3/2
b) max =8 at x=4, min=-1 at x =1
c) max = 3โโ5 at x=1, min โ3โโ5 at x=-1
d) max =โ2 โ ๐โ4 at ๐ฅ = โ๐โ4, min โโ3 + ๐โ3 ๐๐ก ๐ฅ = ๐โ3
7.a)
b)
c)
d)
e)
f)
g)
8.
a) a=5 , b = 7, c = -13
b) x=-5/3
9.
p = -2, q= 4 , x = 1 is minimum value.
10. a = -2 , b = 3 , c= 0, d = 0
Question
1.
f ( x) ๏ฝ
x2
x2 ๏ซ 4
2.
f ๏จx ๏ฉ ๏ฝ
1
1
๏ซ
2( x ๏ญ 2) 2( x ๏ซ 2)
4.
5.
f ( x) ๏ฝ 4 x 3 ๏ญ 9 x 4
f ( x) ๏ฝ x 4 ๏ญ 6 x 2 ๏ซ 5
3๏จ x ๏ซ 1๏ฉ
f ( x) ๏ฝ
๏จx ๏ญ 1๏ฉ2
2
3.
Task; For each of the given function;
i) find the x and y intercepts (if any).
ii) all the asymptotes (if any)
iii) the interval of inc. and dec.
iv) local maximum / local minimum
v) interval of concavity
vi) inflection point (if any)
vii) sketch the function completely.
Answer
x2
1. f ( x) ๏ฝ 2
x ๏ซ4
f ( x) ๏ฝ
2.
3๏จx ๏ซ 1๏ฉ
f ( x) ๏ฝ
๏จx ๏ญ 1๏ฉ2
2
3.
1
1
๏ซ
2( x ๏ญ 2) 2( x ๏ซ 2)
4.
4
2
5. f ( x) ๏ฝ x ๏ญ 6 x ๏ซ 5
f ( x) ๏ฝ 4 x 3 ๏ญ 9 x 4
1. Find the critical points for the following functions.
(a) ๐(๐ฅ) = ๐ฅ 4 โ 8๐ฅ 2 + 3
3
(b) ๐(๐ฅ) = ๐ฅ 2 + 4
(c) ๐(๐ฅ) = โ๐ฅ 2 โ 64
Ans: (a) (0, 3), (2, -13) and (-2, -13)
(b) (0, 4)
(c) (-8, 0), (8, 0)
2. Find the interval where f ( x) ๏ฝ
2 3 13x 2
x ๏ญ
๏ซ 6x ๏ซ 1
3
2
is increasing or decreasing.
1
2
๐
Ans: (โโ, ) , (6, โ) increasing, ( , 6) decreasing
๐
1
3. It is given that y ๏ฝ 6(5 ๏ญ x) 3 .
(a) Find
(i)
dy
dx
(ii)
d2y
dx 2
(b) Find t he coordinates of the critical point, and determine the nature of the
Ans: (๐)(i) โ
2
(ii) โ
2
(5โ๐ฅ)3
4
5
3(5โ๐ฅ)3
(b) (5,0) is a point of inflection.
4. Sketch the graph for
3
2
(a) ๐(๐ฅ) = ๐ฅ + 3๐ฅ โ 4
3
2
(b) ๐(๐ฅ) = โ๐ฅ โ ๐ฅ
(c) ๐(๐ฅ) = 2๐ฅ 4 โ 8๐ฅ
5. Sketch the curve ๐ฆ =
(d) ๐(๐ฅ) = 2๐ฅ 4 โ 8๐ฅ 2 + 6
9๐ฅโ6
.
๐ฅ+7
2
6. Sketch the curve ๐ฆ = 1 โ ๐ฅ
point.
4๐ฅ
7. Sketch the curve ๐ฆ = 1+๐ฅ+๐ฅ2
8. Given ๐(๐ฅ) = 3๐ฅ 4 โ 16๐ฅ 3 + 18๐ฅ 2 , with domain (โโ, +โ)
๐ โฒ (๐ฅ) = 12๐ฅ 3 โ 48๐ฅ 2 + 36๐ฅ and ๐ โฒโฒ (๐ฅ) = 36๐ฅ 2 โ 96๐ฅ + 36.
i.
ii.
Using Second Derivative Test, find the relative maximum and/or relative minimum, if any.
Determine the intervals where the function are increasing and decreasing, if any.
9. Given ๐(๐ฅ) = ๐ฅ 4 โ 4๐ฅ 3 + 10, with domain (โโ, 0) โช (0, +โ).
๐ โฒ (๐ฅ) = 4๐ฅ 3 โ 12๐ฅ 2 and ๐ โฒโฒ (๐ฅ) = 12๐ฅ 2 โ 24๐ฅ.
i.
ii.
Find the intervals where the function is concaving upwards and downwards.
Find the inflection point(s).
10. Given the following information on the function ๐(๐ฅ), hence sketch the graph of the function.
i)
Domain is (โโ, 2) โช (2, +โ).
ii)
Interval where functions is increasing are (2,5)
iii)
Interval where functions is decreasing are (โโ, 2) โช (5, +โ)
iv)
Interval where functions is concave upwards are (โ5,2) โช (4, +โ)
v)
Interval where functions is concave downwards are (โโ, โ5) โช (2,4)
vi)
๐(โ5) = 2 , ๐(4) = 4 and ๐(5) = 6
lim+ ๐(๐ฅ) = 1,
lim ๐(๐ฅ) = 8 , ๐๐๐
lim ๐(๐ฅ) = 0
vii) limโ ๐(๐ฅ) = โ3 ,
๐ฅโ2
Answer
4a
๐ฅโ2
๐ฅโโโ
๐ฅโ+โ
4b
4c
4d
5
Horizontal asymptote at y = 9, Vertical asymptote at x = -7
6
7
8
9
Minumum point =(-1, -4), Maximum point = (1, 4/3)
Max pt: (1,5). Min pt : (0, 0), (3, -27)
Increase: (โโ, ๐] โช [๐, ๐]
Decrease: [๐, ๐] โช [๐, โ)
Concave up: (โโ, ๐) โช (๐, โ)
Concave down: (0,2)
Inflection point at (0,10) and (2,-6)
© Copyright 2026 Paperzz