Section 6.9 Test for a Difference in Proportions Statistics: Unlocking the Power of Data Lock5 Outline Pooled proportion Test for a difference in proportions Statistics: Unlocking the Power of Data Lock5 Split or Steal? http://www.youtube.com/watch?v=p3Uos2fzIJ0 • Both choose “split”: split the jackpot • Both choose “steal”: both get nothing • One “steal,” one “split: stealer gets everything What would you do??? (a) Split (b) Steal Van den Assem, M., Van Dolder, D., and Thaler, R., “Split or Steal? Cooperative Behavior When the Stakes Are Large,” 2/19/11. Statistics: Unlocking the Power of Data Lock5 Split or Steal? SPLIT STEAL Total MALE 140 129 269 FEMALE 163 142 305 Total 303 271 574 Are males or females more cooperative? pM = proportion of males who split pF = proportion of females who split Statistics: Unlocking the Power of Data Lock5 Split or Steal? Are males or females more cooperative? pM = proportion of males who split pF = proportion of females who split The relevant hypotheses are: (a) H0: pM = pF , Ha: pM > pF (b) H0: pM = pF , Ha: pM < pF (c) H0: pM = pF , Ha: pM ≠ pF (d) H0: pM ≠ pF , Ha: pM = pF Statistics: Unlocking the Power of Data Lock5 Split or Steal? SPLIT STEAL Total MALE 140 129 269 FEMALE 163 142 305 Total 303 271 574 pM = proportion of males who split pF = proportion of females who split Calculate the sample statistic, 𝑝𝑀 − 𝑝𝐹 140/269 – 163/305 = 0.520 – 0.534 = -0.014 Statistics: Unlocking the Power of Data Lock5 Hypothesis Testing For hypothesis testing, we want the distribution of the sample proportion assuming the null hypothesis is true H0: p1 = p2 SE = 𝑝1 (1−𝑝1 ) 𝑛1 + 𝑝2 (1−𝑝2 ) 𝑛2 What to use for p1 and p2? Statistics: Unlocking the Power of Data Lock5 Pooled Proportion We assume the proportions are the same between the two groups, and want to use one proportion that is our best guess for what they would be, if they were equal Combine both groups into one big group, and use the overall proportion, called the pooled proportion, 𝒑 Hint: the pooled proportion will always be somewhere in between 𝑝1 and 𝑝2 Statistics: Unlocking the Power of Data Lock5 Split or Steal? MALE FEMALE Total SPLIT 140 163 303 STEAL 129 142 271 Total 269 305 574 Pooled proportion = overall proportion who split 140 + 163 303 𝑝= = = 0.528 269 + 305 574 Statistics: Unlocking the Power of Data Lock5 Test for a Difference in Proportions 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 − 𝑛𝑢𝑙𝑙 𝑧= 𝑆𝐸 𝑧= 𝑝1 −𝑝2 𝑝(1 − 𝑝) 𝑝(1 − 𝑝) + 𝑛1 𝑛2 • If 𝑛𝑝 ≥ 10 and 𝑛(1 − 𝑝) ≥ 10 for both sample sizes, then the p-value can be computed as the area in the tail(s) of a standard normal beyond z. Statistics: Unlocking the Power of Data Lock5 Split or Steal? SPLIT STEAL Total MALE 140 129 269 FEMALE 163 142 305 Total 303 271 574 Based on these data, can we conclude whether males or females are significantly more cooperative when playing Golden Balls? (a) Yes (b) No Statistics: Unlocking the Power of Data Lock5 Split or Steal? Counts are greater than 10 in each category H0: pM = pF , Ha: pM ≠ pF 140 + 163 303 𝑝= = = 0.528 269 + 305 574 𝑝1 −𝑝2 𝑧 = 𝑝(1−𝑝) 𝑝 1−𝑝 𝑛1 = + 𝑛 2 p-value = 2(0.371) 0.528(1 − 0.528) 0.528(1 − 0.528) = 0.742 + 0.520 − 0.534 269 −0.014 = = −0.33 0.042 Statistics: Unlocking the Power of Data 305 Based on these data, we cannot conclude whether males or females are more cooperative. Lock5 Split or Steal Statistics: Unlocking the Power of Data Lock5 Difference in Proportions Come up with your own categorical variable that you would like to analyze by gender, using this class. This should be a categorical variable with possible answers: yes or no Statistics: Unlocking the Power of Data Lock5 Difference in Proportions MALES ONLY ANSWER: Your question here. (a) Yes (b) No Statistics: Unlocking the Power of Data Lock5 Difference in Proportions FEMALES ONLY ANSWER: Your question here. (a) Yes (b) No Statistics: Unlocking the Power of Data Lock5 Difference in Proportions Is there a significant difference in the proportion answering “yes” between males and females? (a) Yes (b) No Statistics: Unlocking the Power of Data Lock5
© Copyright 2026 Paperzz