PASCAL-talk

HITRAN2012 and Remote
Sensing of Planetary
Atmospheres
Iouli Gordon,
Laurence Rothman, Gang Li,
and HITRAN contributors and
validators world wide
OSU symposium, June, 2013
Authors from 22 institutions worldwide
+
New molecule C4H2 (43)
 Jolly A, Fayt A, Benilan Y, Jacquemart D, Nixon CA, Jennings
DE. The ν8 bending mode of diacetylene: from laboratory
spectroscopy to the detection of 13C isotopologues in Titan's
atmosphere. Astrophys J 2010;714:852-9.
 Bizzocchi L, Degli Esposti C, Dore L. Submillimetre-wave
spectrum of diacetylene and diacetylene-d2. Mol Phys
2010;108:2315-23.
 Bizzocchi L, Tamassia F, Esposti CD, Fusina L, Canè E, Dore
L. High-resolution infrared spectroscopy of diacetylene below
1000 cm-1. Mol Phys 2011;109:2181-90.
 Matsumura K, Kawaguchi K, Hirota E, Tanaka T. Stark
modulation infrared diode laser spectroscopy of the ν 6 + ν 8
band of diacetylene. J Mol Spectrosc 1986;118:530-9.
(43) C4H2
2211
0 – 758cm-1
124 126 lines
Overview of MW spectrum of C4H2 (43)
420 GHz
-25
1.6x10
345 GHz
-25
1.4x10

(8+9)-(6+9)
Intensity, cm/molecule
-25
1.2x10
-25
1.0x10
-26
230 GHz
8.0x10
-26
6.0x10
-26
4.0x10
-26
2.0x10
0.0
0
2
4
6
8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Wavenumber, cm
-1
New molecule HC3N (44)
• CDMS and Jolly et al. J Mol Spectrosc
2007;242:46-54.
100
400
500
600
700
New molecule H2 (45)
(45) H2
11
12
15 – 36024 cm-1
3 – 36406 cm-1
4 017 lines
5 129 lines
• Line positions calculated using energy levels reported in Komasa et al, J
Chem Theory Comput 2011;7:3105-15 for H2 and Pachucki and Komasa.
Phys Chem Cheml Phys 2010;12:9188-96 for HD.
• Line intensities calculated using Le Roy’s LEVEL employing Schwartz and
Leroy. J Mol Spectrosc 1987;121:420-39 and Wolniewicz et al. Quadrupole
transition probabilities for the excited rovibrational states of H2.
Astrophysical Journal Supplement Series 1998;115:293-313 and Pachucki
and Komasa. Electric dipole rovibrational transitions in the HD molecule.
Phys Rev A 2008;78:52503..
• NOTE
• 1. There are no HD electric quadrupole transitions yet
• 2. There are some non-neglibgible differences with Kurucz list
New molecule CS (46)
(46) CS
22
24
32
23
1 – 2586 cm-1
1 – 1359 cm-1
1 – 1331 cm-1
1 – 156 cm-1
1 088 lines
396 lines
396 lines
198 lines
Positions: Based on CDMS
Intensities: Chandra S, Kegel WH, Le Roy RJ, Hertenstein T. Einstein A-coefficients for vibrotational transitions in CS. Astron Astrophys, Suppl Ser 1995;114:175.
New molecule SO3 (47)
-20
2.5x10
-19
1.2x10
-20
-19
1.0x10
Intensity, cm/molecule
Intensity, cm/molecule
2.0x10
-20
1.5x10
-20
1.0x10
-20
8.0x10
-20
6.0x10
-20
4.0x10
-21
5.0x10
-20
2.0x10
0.0
460
480
500
520
540
Wavenumber, cm
-1
560
0.0
1350
580
1360
1370
1380
1390
1400
-22
2.2x10
Wavenumber, cm
1410
1420
1430
-1
-22
2.0x10
-22
Intensity, cm/molecule
1.8x10
-22
1.6x10
-22
1.4x10
-22
1.2x10
-22
1.0x10
-23
8.0x10
-23
6.0x10
-23
4.0x10
-23
2.0x10
2720
2740
2760
2780
Wavenumber, cm
2800
2820
-1
Based on Underwood DS, Tennyson J, Yurchenko SN. An ab initio variationally computed
room-temperature line list for SO3. Phys Chem Chem Phys 2013;in press. Supplemented
with energy levels determined from works of Barber and Maki et al on Raman and IR
experiment on SO3
New approach in calculating dipole moment
functions (intensities)
Overview of new line lists
DCl on Venus (2012)
Reported DCl mixing ratio 17.8+/-6.8 ppb. The D/H ratio 280+/-110 times SMOW
Used experimental intensities from 1960’s with large experimental error and
unaccounted isotopic abundance (not only 35Cl/37Cl but also 22% admixture of
HCl). About 1.5 times different from our calculations.
New treatment of observations of DCl
(D/H)HCl = 190 ± 50 times SMOW
Search for DF and observation of H2O
DCl on Venus (2013)
The D/H ratio from HCl is now 190+/-50 times SMOW versus 280+/-110 determined
previously
The D/H ratio from H2O was found to be 95+/-15 times SMOW
The D/H ratio from HF was found to be 420+/-200 times SMOW
Examples of new isotopologues or
enhanced spectral coverage
• Addition of NIR region of NH3 based on Sung et al, JQSRT
2012;113:1066-83.
• Addition of H2S lines in 4472-11370 cm-1 region (based on
experiments at JPL, Grenoble, analyzed in Tomsk), improved
pure rotational region Azzam et al. JQSRT 2013;HITRAN
special issue
• Addition of 7-µm region of ethane di Lauro C, et al. Planetary
and Space Science 2012;60:93-101.
• Introduction of C2HD isotopologue of acetylene (CDMS and
Jolly et al. JQSRT 2008;109:2846-56.)
• Pure rotational region of PH3 Müller HSP. JQSRT 2013;HITRAN
special issue
HITEMP 2010 database
L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V. Perevalov,
S.A. Tashkun, and J. Tennyson, J. Quant. Spectrosc. and Rad. Transfer 111, 2139-2150 (2010)
HITEMP 2014 database planned
C. Richard, I.E. Gordon, L.S. Rothman, M. Abel, L. Frommhold,
M. Gustafsson, J.-M. Hartmann, C. Hermans, W.J. Lafferty,
G. Orton, K.M. Smith, H. Tran “New section of the HITRAN
database: Collision-induced absorption (CIA) ,” JQSRT 113, 12761285 (2012).
Collision Induced Absorption (CIA)
Further Improvements and Enhancements
to the Compilation being considered
►Foreign broadening due to CO2 and H2, and hopefully more…
►Improved database structure (VAMDC paradigm).
www.hitran.org
►More bands and isotopologues for already existing species
►Molecules for astrophysics applications. H3+, C2N2, SO....
►Additional high-temperature parameters (for HITEMP).
Further improvements of already existing lists and addition of
new species (NH3
► More Collision-Induced Absorption bands
18
Check for updates
Acknowledgments
SAO HITRAN team members
Kelly Chance
Cyril Richard
Cameron Mackie
Huge International Collaborative Effort
International HITRAN Advisory Committee
Funding Support
NASA Earth Observing System
NASA Planetary Atmospheres Program
Cooperative Research Development Foundation
20
Next HITRAN/ASA Meeting
June 23-25, 2014
Cambridge, MA