HITRAN2012 and Remote Sensing of Planetary Atmospheres Iouli Gordon, Laurence Rothman, Gang Li, and HITRAN contributors and validators world wide OSU symposium, June, 2013 Authors from 22 institutions worldwide + New molecule C4H2 (43) Jolly A, Fayt A, Benilan Y, Jacquemart D, Nixon CA, Jennings DE. The ν8 bending mode of diacetylene: from laboratory spectroscopy to the detection of 13C isotopologues in Titan's atmosphere. Astrophys J 2010;714:852-9. Bizzocchi L, Degli Esposti C, Dore L. Submillimetre-wave spectrum of diacetylene and diacetylene-d2. Mol Phys 2010;108:2315-23. Bizzocchi L, Tamassia F, Esposti CD, Fusina L, Canè E, Dore L. High-resolution infrared spectroscopy of diacetylene below 1000 cm-1. Mol Phys 2011;109:2181-90. Matsumura K, Kawaguchi K, Hirota E, Tanaka T. Stark modulation infrared diode laser spectroscopy of the ν 6 + ν 8 band of diacetylene. J Mol Spectrosc 1986;118:530-9. (43) C4H2 2211 0 – 758cm-1 124 126 lines Overview of MW spectrum of C4H2 (43) 420 GHz -25 1.6x10 345 GHz -25 1.4x10 (8+9)-(6+9) Intensity, cm/molecule -25 1.2x10 -25 1.0x10 -26 230 GHz 8.0x10 -26 6.0x10 -26 4.0x10 -26 2.0x10 0.0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Wavenumber, cm -1 New molecule HC3N (44) • CDMS and Jolly et al. J Mol Spectrosc 2007;242:46-54. 100 400 500 600 700 New molecule H2 (45) (45) H2 11 12 15 – 36024 cm-1 3 – 36406 cm-1 4 017 lines 5 129 lines • Line positions calculated using energy levels reported in Komasa et al, J Chem Theory Comput 2011;7:3105-15 for H2 and Pachucki and Komasa. Phys Chem Cheml Phys 2010;12:9188-96 for HD. • Line intensities calculated using Le Roy’s LEVEL employing Schwartz and Leroy. J Mol Spectrosc 1987;121:420-39 and Wolniewicz et al. Quadrupole transition probabilities for the excited rovibrational states of H2. Astrophysical Journal Supplement Series 1998;115:293-313 and Pachucki and Komasa. Electric dipole rovibrational transitions in the HD molecule. Phys Rev A 2008;78:52503.. • NOTE • 1. There are no HD electric quadrupole transitions yet • 2. There are some non-neglibgible differences with Kurucz list New molecule CS (46) (46) CS 22 24 32 23 1 – 2586 cm-1 1 – 1359 cm-1 1 – 1331 cm-1 1 – 156 cm-1 1 088 lines 396 lines 396 lines 198 lines Positions: Based on CDMS Intensities: Chandra S, Kegel WH, Le Roy RJ, Hertenstein T. Einstein A-coefficients for vibrotational transitions in CS. Astron Astrophys, Suppl Ser 1995;114:175. New molecule SO3 (47) -20 2.5x10 -19 1.2x10 -20 -19 1.0x10 Intensity, cm/molecule Intensity, cm/molecule 2.0x10 -20 1.5x10 -20 1.0x10 -20 8.0x10 -20 6.0x10 -20 4.0x10 -21 5.0x10 -20 2.0x10 0.0 460 480 500 520 540 Wavenumber, cm -1 560 0.0 1350 580 1360 1370 1380 1390 1400 -22 2.2x10 Wavenumber, cm 1410 1420 1430 -1 -22 2.0x10 -22 Intensity, cm/molecule 1.8x10 -22 1.6x10 -22 1.4x10 -22 1.2x10 -22 1.0x10 -23 8.0x10 -23 6.0x10 -23 4.0x10 -23 2.0x10 2720 2740 2760 2780 Wavenumber, cm 2800 2820 -1 Based on Underwood DS, Tennyson J, Yurchenko SN. An ab initio variationally computed room-temperature line list for SO3. Phys Chem Chem Phys 2013;in press. Supplemented with energy levels determined from works of Barber and Maki et al on Raman and IR experiment on SO3 New approach in calculating dipole moment functions (intensities) Overview of new line lists DCl on Venus (2012) Reported DCl mixing ratio 17.8+/-6.8 ppb. The D/H ratio 280+/-110 times SMOW Used experimental intensities from 1960’s with large experimental error and unaccounted isotopic abundance (not only 35Cl/37Cl but also 22% admixture of HCl). About 1.5 times different from our calculations. New treatment of observations of DCl (D/H)HCl = 190 ± 50 times SMOW Search for DF and observation of H2O DCl on Venus (2013) The D/H ratio from HCl is now 190+/-50 times SMOW versus 280+/-110 determined previously The D/H ratio from H2O was found to be 95+/-15 times SMOW The D/H ratio from HF was found to be 420+/-200 times SMOW Examples of new isotopologues or enhanced spectral coverage • Addition of NIR region of NH3 based on Sung et al, JQSRT 2012;113:1066-83. • Addition of H2S lines in 4472-11370 cm-1 region (based on experiments at JPL, Grenoble, analyzed in Tomsk), improved pure rotational region Azzam et al. JQSRT 2013;HITRAN special issue • Addition of 7-µm region of ethane di Lauro C, et al. Planetary and Space Science 2012;60:93-101. • Introduction of C2HD isotopologue of acetylene (CDMS and Jolly et al. JQSRT 2008;109:2846-56.) • Pure rotational region of PH3 Müller HSP. JQSRT 2013;HITRAN special issue HITEMP 2010 database L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V. Perevalov, S.A. Tashkun, and J. Tennyson, J. Quant. Spectrosc. and Rad. Transfer 111, 2139-2150 (2010) HITEMP 2014 database planned C. Richard, I.E. Gordon, L.S. Rothman, M. Abel, L. Frommhold, M. Gustafsson, J.-M. Hartmann, C. Hermans, W.J. Lafferty, G. Orton, K.M. Smith, H. Tran “New section of the HITRAN database: Collision-induced absorption (CIA) ,” JQSRT 113, 12761285 (2012). Collision Induced Absorption (CIA) Further Improvements and Enhancements to the Compilation being considered ►Foreign broadening due to CO2 and H2, and hopefully more… ►Improved database structure (VAMDC paradigm). www.hitran.org ►More bands and isotopologues for already existing species ►Molecules for astrophysics applications. H3+, C2N2, SO.... ►Additional high-temperature parameters (for HITEMP). Further improvements of already existing lists and addition of new species (NH3 ► More Collision-Induced Absorption bands 18 Check for updates Acknowledgments SAO HITRAN team members Kelly Chance Cyril Richard Cameron Mackie Huge International Collaborative Effort International HITRAN Advisory Committee Funding Support NASA Earth Observing System NASA Planetary Atmospheres Program Cooperative Research Development Foundation 20 Next HITRAN/ASA Meeting June 23-25, 2014 Cambridge, MA
© Copyright 2026 Paperzz