Appendix S2 Assume individual i’s size through time follows: Si (t + d t ) = Si (t ) + d t g + d t e i + e i ,t , where 2 2 e i has mean 0 and among-individual variance r sg, and e i , t has mean 0 and variance ( ) 2 2 through time 1- r s gd t. Let denote the expected value across individuals. s ( t + dt ) = ( Si ( t + dt )) - Si ( t + dt ) 2 2 = ( Si ( t ) + gdt + eidt + ei,t ) 2 2 ( - Si ( t ) + gdt ) 2 = Si ( t ) + 2 Si ( t ) gdt + 2 Si ( t ) eidt + g2dt2 + (eidt ) + (ei,t ) 2 2 = Si ( t ) - Si ( t ) + 2dt Si ( t ) ei + (eidt ) + (ei,t ) 2 = Si ( t ) - Si ( t ) 2 2 2 2 2 - Si ( t ) - 2 Si ( t ) gdt - g2dt2 2 t æ ö 2 2 + 2dt ç Si ( 0) + gt + ei t + åei,t ÷ei + (eidt ) + (ei,t ) è ø t =0 = Si ( t ) - Si ( t ) + 2dt ei2 t + (eidt ) + (ei,t ) 2 2 2 = s 2 ( t ) + 2dt r 2s g2 t + dt2 r 2s g2 + (1- r 2 )s g2dt 2 2
© Copyright 2026 Paperzz