Assessing the Information Content and Impact of Observations on Ocean Circulation Estimates using 4D-Var Andy Moore Dept. of Ocean Sciences UC Santa Cruz Acknowledgements • Office of Naval Research • Hernan Arango • National Science Foundation • Chris Edwards • National Ocean Partnership Program • Gregoire Broquet • Brian Powell • Milena Veneziani • James Doyle • Dave Foley • Anthony Weaver • Mike Fisher • Dan Costa • Patrick Robinson • Javier Zavala-Garay Outline • ROMS 4D-Var • Information content of observations • Observation impacts • Predictability ROMS 4D-Var (Moore et al, 2011a) http://myroms.org • Incremental (linearize about a prior) (Courtier et al, 1994) • Primal & dual formulations (Courtier 1997) • Primal – Incremental 4-Var (I4D-Var) • Dual – PSAS (4D-PSAS) & indirect representer (R4D-Var) (Da Silva et al, 1995; Egbert et al, 1994) • Strong and weak (dual only) constraint • Preconditioned, Lanczos formulation of conjugate gradient (Lorenc, 2003; Tshimanga et al, 2008; Fisher, 1997) • Diffusion operator model for prior covariances (Derber & Bouttier, 1999; Weaver & Courtier, 2001) • Multivariate balance for prior covariance (Weaver et al, 2005) • Adjoint of dual 4D-Var (obs impact, obs sensitivity, OSEs) (Langland and Baker, 2004; Gelaro et al, 2007) • Physical and ecosystem components • Parallel (MPI) ROMS 4D-Var (Moore et al, 2011a) http://myroms.org • Incremental (linearize about a prior) (Courtier et al, 1994) • Primal & dual formulations (Courtier 1997) • Primal – Incremental 4-Var (I4D-Var) • Dual – PSAS (4D-PSAS) & indirect representer (R4D-Var) (Da Silva et al, 1995; Egbert et al, 1994) • Strong and weak (dual only) constraint • Preconditioned, Lanczos formulation of conjugate gradient (Lorenc, 2003; Tshimanga et al, 2008; Fisher, 1997) • Diffusion operator model for prior covariances (Derber & Bouttier, 1999; Weaver & Courtier, 2001) • Multivariate balance for prior covariance (Weaver et al, 2005) • Adjoint of dual 4D-Var (obs impact, obs sensitivity, OSEs) (Langland and Baker, 2004; Gelaro et al, 2007) • Physical and ecosystem components • Parallel (MPI) Lanczos Factorization Cornelius Lanczos (1893-1974) A Vm Tm Vm A is the Hessian or stabilized representer matrix. m is the number of inner-loops The California Current Mesoscale eddies Conclusions Information content: • Much of the current observational data is redundant (>90%). Observation impact: • In situ observations represent ~10% of total obs, but often exert considerable impact on the coastal circulation. Observation sensitivity & predictability: • Satellite obs exert the largest control on predictability of coastal circulation. ROMS: California Current System (CCS) 4D-Var applied sequentially every 7 days: Jul 2002-Dec 2004. COAMPS forcing fb(t), Bf ECCO open boundary conditions bb(t), Bb xb(0), B Previous assimilation cycle 3km, 10 km, 30km, 30 or 42 levels Veneziani et al (2009) Broquet et al (2009ab, 2011) Observations (y) CalCOFI & GLOBEC EN3 TOPP Elephant Seals (APB) SST & SSH Ingleby and Huddleston (2007) ARGO Data from Dan Costa Observations (y) CalCOFI & GLOBEC ~90% EN3 SST & SSH ~10% TOPP Elephant Seals (APB) Ingleby and Huddleston (2007) ARGO Data from Dan Costa Sequential 4D-Var (2002-2004) Observations prior 4D-Var Analysis Posterior Observations prior 4D-Var Analysis Observations prior Posterior 4D-Var Analysis Posterior 7 days Forecast Forecast Forecast Maximum Likelihood Estimate Circulation estimate from 4D-Var: xa xb K y H (xb (t )) Posterior Gain Prior Obs operator Obs K DG (GDG R) T Prior Cov T TLM at obs points Prior hypotheses Obs Cov -1 Information Content of Obs Degrees of freedom of obs (dof): dof = Tr KG Cardinali et al, 2004; Desroziers et al., 2009 Bennett & McIntosh, 1982 Tr{KG}/Nobs vs assimilation cycle (courtesy of Lanczos vectors) 30km upper & lower bounds Only ~10% of obs contain independent info At 10km resolution, dof~1-2% of Nobs (Moore et al, 2011b) Observation Impacts I 7day average transport 10km ROMS I Transport increment = (Posterior-Prior) (Langland & Baker, 2004; Gelaro et al., 2007) I KT platform p 1 Nobs I p Ii i 1 Prior alongshore transport (CC+CUC+CJ) Poleward I 37 N Equatorward Prior cross-shore transport Offshore Onshore I 500m Analysis Cycle – Transport Increments Poleward Alongshore transport I 37 N Equatorward Cross-shore transport Offshore I 500m Onshore Analysis Cycle – Observation Impacts 10km ROMS Alongshore transport Poleward I 37 N Equatorward Cross-shore transport I 500m Offshore Onshore (Moore et al, 2011c) rms Alongshore Transport Impacts IGW IGW Adjoint CTW (GT) IGW IGW IGW Gyre Circulation Adjoint CTW (GT) CTW (G) IGW Sv (10-5) SSH SST CTW (G) Alongshore Transport Impacts Sv (10-3) Sv Argo Salinity CTD Salinity Predictability 14 day forecast ensemble f 2 14 f 7 4D-Var 7 day forecast ensemble t0 t0+7 t0+14 time Predictability due to assimilating observations during [t0,t0+7]: f 2 14 f 7 2 Obs Sensitivity using (4D-Var)T 2 Example: 37N Transport Predictability (Moore et al, 2011d) 30km ROMS r 100 r 0 f 2 14 f 7 2 f 2 14 implies 4D-Var increases predictability Conclusions • Much of the current observational data is redundant (>90%). • Caveat: Dependent on prior hypotheses. • In situ observations represent ~10% of total obs, but often exert considerable impact on the coastal circulation (transport). • Caveat: Dependent on prior hypotheses. • Recommendation: Decimate satellite data. • Satellite obs exert the largest control on predictability coastal circulation (transport). • Caveat: Dependent on prior hypotheses.
© Copyright 2025 Paperzz