Parameter Redundancy and Identifiability in Ecological Models Diana Cole, University of Kent Introduction Occupancy Model example Species present and detected Species present but not detected Species absent Prob = ๐๐ Prob = ๐ 1 โ ๐ Prob = 1 โ ๐ Prob not detected = ๐ 1 โ ๐ + 1 โ ๐ = 1 โ ๐๐ โข Parameters: ๐ โ site is occupied, ๐ โ species is detected. โข Can only estimate ๐๐ rather than ๐ and ๐. โข Model is parameter redundant or parameters are non-identifiable. Prob detected = ๐๐ 2/27 Parameter Redundancy โข Suppose we have a model ๐(๐) with parameters ๐. A model is globally (locally) identifiable if ๐ ๐1 = ๐(๐2 ) implies that ๐1 = ๐2 (for a neighbourhood of ๐). โข A model is parameter redundant model if it can be written in terms of a smaller set of parameters. A parameter redundant model is non-identifiable. โข There are several different methods for detecting parameter redundancy, including: โ numerical methods (e.g. Viallefont et al, 1998), โ symbolic methods (e.g. Cole et al, 2010), โ hybrid symbolic-numeric method (Choquet and Cole, 2012). โข Generally involves calculating the rank of a matrix, which gives the number of parameters that can be estimated. 3/27 Problems with Parameter Redundancy โข There will be a flat ridge in the likelihood of a parameter redundant model (Catchpole and Morgan, 1997), resulting in more than one set of maximum likelihood estimates. โข Numerical methods to find the MLE will not pick up the flat ridge, although it could be picked up by trying multiple starting values and looking at profile log-likelihoods. โข The Fisher information matrix will be singular (Rothenberg, 1971) and therefore the standard errors will be undefined. โข However the exact Fisher information matrix is rarely known. Standard errors are typically approximated using a Hessian matrix obtained numerically. Can parameter redundancy be detected from the standard errors? 4/27 Is example 1 parameter redundant? Parameter ๐1 ๐2 ๐3 ๐4 Estimate 0.39 0.64 0.09 0.18 Standard Error imaginary 0.061 imaginary imaginary โข Hessian (๐ฏ) computed numerically has rank 4 (exact Hessian would have rank < 4 if parameter redundant) โข Single Value Decomposition โข Write ๐ฏ = ๐ผ๐บ๐ฝ, Matrix ๐บ is diagonal matrix (Eigen values), the number of non-zero values is the rank of the matrix. โข ๐บ๐๐ = 68.65 48.3996 12.7670 0.0019 โข Standardised 1 0.71 0.19 0.000028 โข Hybrid Symbolic-Numeric method: rank 3, only ๐2 is estimable. โข Symbolic Method: rank 3, estimable parameter combinations ๐2 , 1 โ ๐1 ๐3 , ๐1 ๐4 . 5/27 Is example 2 parameter redundant? Parameter ๐1 ๐2 ๐3 ๐4 Estimate 0.41 0.83 0.10 0.19 Standard Error 0.70 0.07 0.11 0.33 โข Hessian (H) computed numerically has rank 4 (exact would have rank < 4 if parameter redundant). โข Standardised Single Value Decomposition 1 0.70 0.045 0.0010 โข Hybrid-Symbolic Numeric method: rank 3, only ๐2 is estimable. โข Symbolic Method: rank 3, estimable parameter combinations ๐2 , 1 โ ๐1 ๐3 , ๐1 ๐4 . 6/27 Is example 3 parameter redundant? Parameter ๐1 ๐2 ๐3 ๐4 ๐5 ๐6 ๐7 ๐8 Estimate 0.37 0.48 0.39 0.34 0.40 0.65 0.10 0.18 Standard Error 0.19 0.19 0.20 0.17 0.20 0.06 0.03 0.09 โข Standardised Single Value Decomposition [1.00 0.65 0.11 0.096 0.074 0.039 0.034 0.0011] โข Hybrid-Symbolic Numeric method: rank 8 so is not parameter redundant. โข Symbolic method: rank 8 so is not parameter redundant, but a further test reveals that model could be near redundant, as when ๐1 = ๐2 = ๐3 = ๐4 = ๐5 model is the same as example 1. 7/27 Simulation Study for Examples 1 and 2 Parameter True Value Average MLE St. Dev. MLE ๐1 0.4 0.49 0.32 ๐2 0.7 0.70 0.06 ๐3 ๐4 0.1 0.2 0.28 0.33 0.32 0.32 57% have defined standard errors SVD threshold %age SVD test correct 0.01 100% 0.001 75% 0.0001 15% 0.00001 7% 8/27 Mark-Recovery Models Animals are marked and then when the animal dies its mark is recovered. E.g. Lapwings Recapture yr 63 64 64 1147 ๏ฌ63 ๐ญ = 1285 ๏ฌ64 1106 ๏ฌ65 Ringing yr 63๏ฎ 14 64๏ฎ ๐ต = 65๏ฎ 4 16 1 4 11 9/27 Mark-Recovery Models โข โข โข โข 1147 14 4 1 ๐ญ = 1285 ๐ต= 16 4 1106 11 ๐1 1st year survival probability, ๐๐ adult year survival ๐1 1st year recovery probability, ๐๐ adult year recovery 1 โ ๐1 ๐1 ๐1 1 โ ๐๐ ๐๐ ๐1 ๐๐ 1 โ ๐๐ ๐๐ ๐ฝ2 1 โ ๐1 ๐1 ๐1 1 โ ๐๐ ๐๐ ๐= ๐ฝ1 1 โ ๐1 ๐1 โข โข ๐= ๐ฝ1 ๐ฝ2 1 โ ๐๐ ๐ฝ1 ๐ฝ2 ๐๐ 1 โ ๐๐ ๐ฝ2 1 โ ๐๐ ๐ฝ1 10/27 Symbolic Method (Cole et al, 2010 and Cole et al, 2012) โข Exhaustive summary โ unique representation of the model โข Parameters 11/27 Symbolic Method ๐๐ฟ๐ โข Form a derivative matrix ๐๐ = ๐๐ฝ โข Calculate rank. Number estimable parameters = rank(D). Deficiency = p โ rank(D). Deficiency > 0 model is parameter redundant. โข Rank ๐1 = Rank ๐2 = Rank ๐3 = 3 but there are 4 parameters, so model is parameter redundant. 12/27 Estimable Parameter Combinations โข For a parameter redundant model with deficiency d, solve ๐ถโฒ ๐ = 0. There will be d solutions, ๐ถ๐ . If ๐ผ๐๐ = 0 for all j, then ๐๐ is estimable. โข Estimable parameter combinations can be found by solving a set of PDEs: โข Estimable parameter combinations: ๐๐ , (1 โ ๐1 )๐1 , ๐1 ๐๐ . 13/27 Other uses of symbolic method โข Uses of symbolic method: โ Catchpole and Morgan (1997) exponential family models, mostly used in ecological statistics, โ Rothenberg (1971) original general use, econometric examples, โ Goodman (1974) latent class models, โ Sharpio (1986) non-linear regression models, โ Pohjanpalo (1982) first use for compartment models, โ Cole et al (2010) General exhaustive summary framework, โ Cole et al (2012) Mark-recovery models. โข Finding estimable parameters: โ Catchpole et al (1998) exponential family models, โ Chappell and Gunn (1998) and Evans and Chappell (2000) compartment models, โ Cole et al (2010) General exhaustive summary framework. Problem with Symbolic Method โข The key to the symbolic method for detecting parameter redundancy is to find a derivative matrix and its rank. โข Models are getting more complex. โข The derivative matrix is therefore structurally more complex. โข Maple runs out of memory calculating the rank. Wandering Albatross Multi-state models for sea birds Hunter and Caswell (2009) Cole (2012) Striped Sea Bass Tag-return models for fish Jiang et al (2007) Cole and Morgan (2010) โข How do you proceed? โ Numerically โ but only valid for specific value of parameters. But canโt find combinations of parameters you can estimate. Not possible to generalise results. โ Symbolically โ involves extending the theory, again it involves a derivative matrix and its rank, but the derivative matrix is structurally simpler. โ Hybrid-Symbolic Numeric Method. 15/27 Multi-state capture-recapture example Wandering Albatross โข Hunter and Caswell (2009) examine parameter redundancy of multistate mark-recapture models, but cannot evaluate the symbolic rank of the derivative matrix (developed numerical method). โข 4 state breeding success model: 1 success 1 3 post-success 3 N ๏ญ1 log L ๏ฝ ๏ฅ 2 = failure 4 4 4 ๏ฅ ๏ฅ๏ฅ m r ๏ฝ1 c ๏ฝ r ๏ซ1 i ๏ฝ1 j ๏ฝ1 ๏ ( r ,c ) 2 N ( r ,c ) i, j log ๏ij( r ,c ) ๏ฌ๏ฏ๏จ๏ r ๏ซ1๏ r ๏ฉT ๏ฝ๏ญ ๏ฏ๏ฎ๏ป๏ c ๏ c ๏ญ1 (I ๏ญ ๏ c ๏ญ1 )๏ c ๏ญ 2 ...(I ๏ญ ๏ r ๏ซ1 )๏ r ๏ฝT c ๏ฝ r ๏ซ1 c ๏พ r ๏ซ1 4 = post-failure recapture successful breeding breeding given survival survival ๏ฉ p1 0 0 0๏น ๏ณ 2 ๏ข 2๏ง 2 ๏ณ 3 ๏ข 3๏ง 3 ๏ณ 4 ๏ข 4๏ง 4 ๏น ๏ฉ ๏ณ 1๏ข1๏ง 1 ๏ช 0 p 0 0๏บ ๏ช๏ณ ๏ข (1 ๏ญ ๏ง ) ๏ณ ๏ข (1 ๏ญ ๏ง ) ๏ณ ๏ข (1 ๏ญ ๏ง ) ๏ณ ๏ข (1 ๏ญ ๏ง )๏บ 2 1 2 2 2 3 3 3 4 4 4 ๏บ ๏บ ๏๏ฝ๏ช ๏๏ฝ๏ช 1 1 ๏ช 0 0 0 0๏บ ๏ช ๏ณ 1 (1 ๏ญ ๏ข1 ) ๏บ 0 ๏ณ 3 (1 ๏ญ ๏ข 3 ) 0 ๏ช ๏บ 16/27 ๏ช ๏บ 0 0 0 0 0 ๏ณ ( 1 ๏ญ ๏ข ) 0 ๏ณ ( 1 ๏ญ ๏ข ) ๏ซ ๏ป 2 2 4 4 ๏ซ ๏ป Extended Symbolic Method Cole et al (2010) 1. Choose a reparameterisation, s, that simplifies the model ๏ฉ s1 ๏น ๏ฉ ๏ณ 1 ๏ข 1๏ง 1 ๏น structure. ๏ช s ๏บ ๏ช๏ณ ๏ข ๏ง ๏บ ๏ช 2 ๏บ ๏ช 2 2 2๏บ ๏ช s 3 ๏บ ๏ช๏ณ 3 ๏ข 3 ๏ง 3 ๏บ s๏ฝ๏ช ๏บ๏ฝ๏ช ๏บ ๏ ๏ ๏ช ๏บ ๏ช ๏บ ๏ช s13 ๏บ ๏ช p1 ๏บ ๏ช ๏บ ๏ช ๏บ ๏ช๏ซ s14 ๏บ๏ป ๏ช๏ซ p 2 ๏บ๏ป 2. Rewrite the exhaustive summary, ๏ซ(๏ฑ), in terms of the reparameterisation - ๏ซ(s). p1๏ณ 1๏ข1๏ง 1 ๏ฉ ๏น ๏ช ๏บ p ๏ณ ๏ข ( 1 ๏ญ ๏ง ) 2 1 1 1 ๏ช ๏บ ๏ช ๏บ p1๏ณ 2 ๏ข 2๏ง 2 ๏ซ (ฮธ) ๏ฝ ๏ช ๏บ p ๏ณ ๏ข ( 1 ๏ญ ๏ง ) 2 2 2 2 ๏ช ๏บ 2 2 2 ๏ช p1๏ณ 1 ๏ข1 ๏ง 1 (1 ๏ญ p1 ) ๏ซ ๏๏บ ๏ช ๏บ ๏ ๏ช๏ซ ๏บ๏ป s1s13 ๏ฉ ๏น ๏ช ๏บ s s 5 14 ๏ช ๏บ ๏ช ๏บ s2 s13 ๏ซ (s) ๏ฝ ๏ช ๏บ s s 6 14 ๏ช ๏บ 2 ๏ช s1 s13 (1 ๏ญ s13 ) ๏ซ ๏๏บ ๏ช ๏บ ๏ ๏ช๏ซ ๏บ๏ป 17/27 Extended Symbolic Method 3. Calculate the derivative matrix Ds. ๏ฉ s13 ๏ฉ ๏ถ๏ซ j (s) ๏น ๏ช๏ช 0 Ds ๏ฝ ๏ช ๏บ๏ฝ๏ช 0 ๏ซ ๏ถsi ๏ป ๏ช ๏ซ๏ 4. 0 0 0 s13 0 0 0 (2s1 ๏ญ 2s1 s13 ) s13 ๏๏น ๏บ 0 ( s5 ๏ญ s5 s14 ) s13 ๏บ ๏บ 0 s9 s13 ๏บ ๏ป ๏ฆ ๏ถ ๏ฆ ๏ฉ ๏ถs j ๏น ๏ถ ๏ง The no. of estimable parameters =rank(Ds) ๏ง if Rank ๏ง๏ง ๏ช ๏บ ๏ท๏ท ๏ฝ Dim (s) ๏ท๏ท. ๏จ ๏ซ ๏ถ๏ฑ i ๏ป ๏ธ ๏จ ๏ธ rank(Ds) = 12, no. est. pars = 12, deficiency = 14 โ 12 = 2 5. If Ds is full rank s = sre is a reduced-form exhaustive summary. If Ds is not full rank solve set of PDE to find a reduced-form exhaustive summary, sre. s re ๏ฝ ๏s1 s2 s5 s6 s11 s12 s13 s14 s 7 / s3 s8 / s4 s3 s9 s4 s10 ๏ T Extended Symbolic Method 6. Use sre as an exhaustive summary. ๏ฉ s re ๏ฝ ๏ช๏ณ 1๏ข1๏ง 1 ๏ณ 2 ๏ข 2๏ง 2 ๏ณ 1๏ข1๏ง 1 ๏ณ 2 ๏ข 2๏ง 2 ๏ณ 3 ๏ข 3 ๏ณ 4 ๏ข 4 ๏ซ p1 p2 ๏ง3 ๏ง3 ๏ง4 ๏ง4 ๏ณ 3 ๏ข 3๏ง 3๏ณ 1๏ข1 Survival Constraint Breeding Constraint ๏ณ1= ๏ณ2= ๏ณ3= ๏ณ4 ๏ณ1= ๏ณ3, ๏ณ2= ๏ณ4 ๏ณ1= ๏ณ2, ๏ณ3= ๏ณ4 ๏ณ1, ๏ณ2, ๏ณ3,๏ณ4 ๏ข1= ๏ข2= ๏ข3= ๏ข4 0 (8) 0 (9) 1 (9) 1 (11) ๏ข1= ๏ข3 ,๏ข2= ๏ข4 0 (9) 0 (10) 0 (10) 2 (12) ๏ข1= ๏ข2, ๏ข3= ๏ข4 0 (9) 0 (10) 1 (10) 1 (12) ๏ข1,๏ข2,๏ข3,๏ข4 0 (11) 0 (12) 0 (12) 2 (14) ๏น ๏ณ 4 ๏ข 4๏ง 4๏ณ 2 ๏ข 2 ๏บ ๏ป T Multi-state markโrecapture models State 1: Breeding site 1 State 2: Breeding site 2 State 3: Non-breeding, Unobservable in state 3 ๏ณ - survival ๏ข - breeding ๏ง - breeding site 1 1 โ ๏ง - breeding site 2 20/27 Multi-state markโrecapture models โ General Model โข General Multistate-model has S states, with the last U states unobservable with N years of data. โข Survival probabilities released in year r captured in year c: โข ๏t is an S๏ดS matrix of transition probabilities at time t with transition probabilities ๏ฆi,j(t) = ai,j(t). โข Pt is an S๏ดS diagonal matrix of probabilities of capture pt. โข pt = 0 for an unobservable state, 21/27 General simpler exhaustive summary Cole (2012) r = 10N โ 17 d=N+3 22/27 Hybrid Symbolic-Numeric Method โข โข โข โข โข Choquet and Cole (2012) Calculate the derivative matrix, ๐๐ฟ ๐ซ= , ๐๐ฝ symbolically. Evaluate ๐ซ at a random point ๐ฝ๐ to give ๐ซ๐ . Calculate ๐๐ the rank of ๐ซ๐ . Repeat for 5 random points model, then ๐ = max ๐๐ . If the model is parameter redundant for any ๐ซ๐ with ๐๐ = ๐ solve ๐ถโฒ๐ ๐ซ๐ = 0. The zeros in ๐ถ๐ indicate positions of parameters that can be estimated. 23/27 Example โ multi-site capture-recapture model โข The capture-recapture models can be extended to studies with multiple sites (Brownie et al, 1993). โข Example Canada Geese in 3 different geographical regions T=6 years. โข Geese tend to return to the same site โ memory model. (๐ก) โข Initial state probabilities:๐๐ ๐ก ๐ก ๐ก ๐ก for ๐ = 1,2 & ๐ก = 1, โฆ 6 (๐3 = 1 โ ๐1 โ ๐2 ) ๐ก โข Transition probabilities: ๐โ๐๐ for ๐, ๐ = 1,2,3 & ๐ก = 1, โฆ , 5 and ๐๐๐๐ for ๐, ๐, ๐ = 1,2,3 & ๐ก = 2, โฆ , 5. ๐ก โข Capture probabilities: ๐๐ for ๐ = 1,2,3 , ๐ก = 2, โฆ , 6. (p = 180 Parameters) โข (General simpler exhaustive summary, Cole et al, 2014) 24/27 Example โ Occupancy models (Hubbard et al, in prep) โข Robust design used to remove PR in occupancy models โข Monitoring of amphibians in the Yellowstone and Grand Teton National Parks, USA (Gould et al, 2012). โข Two species: Columbian Spotted Frogs and Boreal Chorus Frogs. โข ๐ occupancy probabilities, ๐ detection probabilities. โข (s) dependence on site, (t) dependence of time, โ dependent on neither site nor time. Model ๐ โ ๐ โ ๐ ๐ ๐ โ ๐ โ ๐ ๐ ๐ ๐ก ๐ ๐ก ๐ ๐ก, ๐ ๐ โ ๐ ๐ก, ๐ ๐ ๐ก ๐ ๐ก, ๐ ๐ ๐ก, ๐ Rank 20 65 35 59 161 176 236 Deficiency No. pars 0 20 0 65 0 35 0 59 17 178 17 193 67 303 25/27 Conclusion Numeric Symbolic Hybrid-Symbolic Accurate / correct answer Not always Yes Yes General Results (e.g. any no. of years) No Yes Work in progress Easy to use (e.g. for an ecologist) Yes No, but can develop simpler ex. sum Yes Possible to add to existing computer packages Yes No (needs symbolic algebra) Yes (E-surge and Msurge) No Yes Yes No Yes In the future? Best for intrinsic PR and general results Best for extrinsic PR and a quick result 26/27 Individually Identifiable Parameters Estimable parameter combinations References http://www.kent.ac.uk/smsas/personal/djc24/parameterredundancy.htm โ โ โ โ โ โ โ โ โ โ โ โ โ โ โ โ โ โ โ Brownie, C. Hines, J., Nichols, J. et al (1993) Biometrics, 49, p1173. Catchpole, E. A. and Morgan, B. J. T. (1997) Biometrika, 84, 187-196 Catchpole, E. A., Morgan, B. J. T. and Freeman, S. N. (1998) Biometrika, 85, 462-468 Chappell, M. J. and Gunn, R. N. (1998) Mathematical Biosciences, 148, 21-41. Choquet, R. and Cole, D.J. (2012) Mathematical Biosciences, 236, p117. Cole, D. J. and Morgan, B. J. T. (2010) JABES, 15, 431-434. Cole, D. J., Morgan, B. J. T and Titterington, D. M. (2010) Mathematical Biosciences, 228, 16โ30. Cole, D. J. (2012) Journal of Ornithology, 152, S305-S315. Cole, D. J., Morgan, B. J. T., Catchpole, E. A. and Hubbard, B.A. (2012) Biometrical Journal, 54, 507-523. Cole, D. J., Morgan, B.J.T., McCrea, R.S, Pradel, R., Gimenez, O. and Choquet, R. (2014) Ecology and Evolution, 4, 2124-2133, Evans, N. D. and Chappell, M. J. (2000) Mathematical Biosciences, 168, 137-159. Gould, W. R., Patla, D. A., Daley, R., et al (2012). Wetlands, 32, p379. Goodman, L. A. (1974) Biometrika, 61, 215-231. Hunter, C.M. and Caswell, H. (2009). Ecological and Environmental Statistics, 3, 797-825 Jiang, H. Pollock, K. H., Brownie, C., et al (2007) JABES, 12, 177-194 Pohjanpalo, H. (1982) Technical Research Centre of Finland Research Report No. 56. Rothenberg, T. J. (1971) Econometrica, 39, 577-591. Shapiro, A. (1986) Journal of the American Statistical Association, 81, 142-149. Viallefont, A., Lebreton, J.D., Reboulet, A.M. and Gory, G. (1998) Biometrical Journal, 40, 313-325. 27/27
© Copyright 2026 Paperzz