requirements AdvLIGO – optical layout AdvLIGO PSL – subsystem layout power stabilizaiton front end 20W power stages 200W premode cleaner 170W reference cavity frequency stabilization mode cleaner long baseline cavities Advanced LIGO PSL – requirements Power / Beamprofile: – 165W in gausian TEM00 mode – less than 5W in non- TEM00 modes Drift: – 1% power drift over 24hr. – 2% pointing drift Control: – tidal frequency acuator +/- 50 MHz, time constant < 30min – power actuator 10kHz BW, +/-1% range – frequency actuatot BW:<20o lag at 100kHz, range: DC-1Hz: 1MHz, 1Hz-100kHz: 10kHz frequency noise requirement intensity noise requirement further PSL requirements • interfaces to detector control software • interfaces to DAQ system • environmental requirements: size, power, cooling • reliability to meet detector duty cycle goal • easy to maintain (change of items with lifetimes < 2years) concept PSL optical layout high power ring laser 200W GEO typ ring laser 15W spatial filter resonator (PMC) NPRO 1W frequency reference resonator AOM Advanced LIGO Laser Design output f QR NPRO f FI BP EOM FI modemaching optics f QR HR@1064 HT@808 f YAG / Nd:YAG 3x2x6 f 2f f YAG / Nd:YAG / YAG 3x 7x40x7 High Power Slave 20 W Master PSL – stabilization scheme intensity stabilization outer loop injection locking intensity stabilization inner loop PMC loop frequency stabilization inner loop frequency stabilization outer loop pre-stabilized -LIGO 10W laser length controll intensity controller NPRO EO pre-mode cleaner power amplifier to suspended mode cleaner temp PZT EO phase shifter frequency contoller AO mixer reference cavity LIGOI reference cavity, AOM, tidal correction pre-modecleaner fu se d s ilic a sp a c e r M 1 M 3 M 2 PZT • 713 MHz free spectral range • linewidth: 162 kHz in s-pol. , 3.2 MHz in p-pol. • circulating power 0.135MW/cm2 (for p-pol.), 2.64MW/cm2 (for s-pol.) • linewidth required to filter RIN(@25MHz) of 180W laser: 3.7MHz status PSL set-up high power ring laser 200W GEO typ ring laser 15W spatial filter resonator (PMC) NPRO 1W frequency reference resonator AOM Nd:YAG Master-Laser NPRO (non-planar ring oscillator) by Innolight* • output power: 800mW • frequency noise: [ 10kHz/f ] Hz/sqrt(Hz) • power noise: 10-6 /sqrt(Hz) * US dristibution: Resonant optics Corp., San Martin CA High Power Locking Scheme Master • 2W Miser Mephisto 2000 Innolight • EOM: New Focus @ 29,02 MHz 20% OC HR 20% OC HR Brewster Plate Brewster Plate f QR f 80 150 50 fiber bundle 10 X 30 W 80 150 50 fiber bundle 10 X 30 W f f 2f f f QRrelay optics f 2f relay optics f 54 mm laser rod with two undoped end caps 54 mm laser rod with two undoped end caps • Isolator: Gsänger GEO 600 Slave Laser performance of the LIGOI frequency stab High Power Locking Scheme Medium Stage • 12 W med. power stage based on GEO 600 laser design opt ~ 30 % • Isolator: Gsänger high power design GEO 600 Slave Laser Prototype II Frequency Stability 6 1/2 Frequency Fluctuations [Hz/Hz ] 10 quasi monolithic slave relative to stabilized NPRO (inj.-lock actuator signal) discrete component slave (ditto) free running NPRO relative to a reference cavity 5 10 4 10 3 10 2 10 1 10 0 10 -1 10 1 10 100 1000 Frequency [Hz] 10000 100000 12W injection-locked laser-system • NPRO (non-planar ring oscillator) master laser, output power: 800mW • slave laser optical components mounted on rigid resonator-spacer (Invar) • 12W output power (< 5% in higher TEM modes) • injection-locking stable over days High Power Slave • 87 W output power • linear polarized • single transverse mode • M2x,y ~ 1,2 Output beam 30% OC Input beam ( Master ) PZM HWP BP QR Experimental/Diode Temperature Control PC Hardwa re In terlock P T1 00 He at Sink PT1000 Pel ti er D/A Chang er Photo-Diode A/ D Chang er Laser-Diode Power Supply Light Bus d igital PID -Co ntro ller Peltier A mplifie r laser diode JENOPTIK 30 W, fiber coupled, NA 0.22; 800 m temperature resolution: 0.01K temperature fluctuations: 2-3 digits temperature stability better than 0.05K Experimental/Diode Box •4 boxes user interface 4 systems (boxes) • each 10 X 30 W fiber-coupled diodes 1200 W pump Power 40 temperatures 4 current controls (1 per box) laser diode (10) heat sink (2) ADC/DAC upcoming: • 40 diode power measurements laser power control for each diode overtemp interlocks peltier drivers High Power Locking Scheme • 87 W high power slave single transverse mode M2 ~ 1,2 opt ~ 23 % High Power Locking Scheme PD PD FI CCD PMC PD PD Modemaching Output beam MISER EOM FI Results First high power injection locked laser system 87 W linear polarized, single frequency, single transverse mode ( total power of all systems ~ 101 W ) total optical efficiency 22% locking direct to 2 W master possible single frequency output power ~ 70 W Beam Characterization Beat signals of free running slave no higher order modes detect 0,000015 Beam profile of locked system M2~1.1 , less elliptical beam Res.Bandwith 50 KHz PD Signal [V] 0,000010 0,000005 0,000000 2,00E+008 3,00E+008 4,00E+008 5,00E+008 6,00E+008 7,00E+008 8,00E+008 f [Hz] Relock Time 2 1 Slave 12 W Master Piezo Ramp: Master 1,3 Hz (770ms) Slave 2.5 Hz (400ms) 0 PD Signal [V] -1 -2 -3 -4 -5 -6 -7 -8 -0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4 t [s] relock time < 500 ms faster relock possible depending on piezo ramp System Optimization To get full injection locked power following things has to be optimized: • Modemaching in the high power slave ( FI with compensated thermal lens ) • Outputcoupler of high power slave •optimize gain overlap of different Lasers • implement pumplight optimization next steps Pump Concepts mode selective pumping 10 x 30 W Laser Rod Glas Rod Objektiv 4500 10 10 8 8 6 6 4000 3500 2000 Y 2500 Y W/cm 2 3000 w = 1mm 1500 1000 4 4 2 2 500 0 20 40 60 80 100 x 2 4 6 X 8 10 2 4 6 X 8 10 Pump Light Homogenization 60 mulimode output power [W] with Homogenization w/o Homogenization 50 30 % more output power with homogenization better gain overlap and less distortion for low order modes 40 30 20 10 0 20 40 60 80 100 120 140 Pump Power [W] 160 180 200 New Head Design Pump Chamber water flow 2.5 cm Birefringence compensation Find working point with less birefringence Pump Light Homogenization fiber bundle laser crystal FS- rod optics fluorescence w/o homogenization Homogenization of Pump Light Glas Rod 3x30mm 8 8 6 6 Y 10 x 800 µm 10 Y simulation 10 4 4 2 2 2 4 6 10 measured 30 x 800 µm 8 10 2 4 6 10 X 8 8 10 X 8 6 6 4 4 2 2 2 4 6 8 10 2 4 6 8 10 Pump Concepts mode selective pumping 10 x 30 W Glas Rod Laser Rod Objektiv 9000 10 10 8 8 6 6 8000 7000 5000 4000 w = 2 mm Y Y W/cm 2 6000 4 4 2 2 3000 2000 0 20 40 60 80 100 x 2 4 6 X 8 10 2 4 6 X 8 10 Optimization of Pump Light Distribution CCD • alignment of homogenous and centered pump light profile • pump power calibration for PD-readout Optimize Resonator 20% OC HR 20% OC HR Brewster Plate Brewster Plate f QR f 80 150 50 fiber bundle 10 X 30 W 80 150 50 fiber bundle 10 X 30 W f f 2f f f QRrelay optics f 2f relay optics f 54 mm laser rod with two undoped end caps 54 mm laser rod with two undoped end caps • Test different laser rods 4,5 mm • Test different pump spot sizes find best laser design before doubling the system Advanced Ligo Laser 1st. Step 20% OC HR 20% OC HR Brewster Plate Brewster Plate f QR f 80 150 50 fiber bundle 10 X 30 W 80 150 50 fiber bundle 10 X 30 W f f 2f f f QRrelay optics f 2f relay optics f 54 mm laser rod with two undoped end caps 54 mm laser rod with two undoped end caps • Optimized laser head with respect to beam quality and output power • up to now 100 W of output power in single transverse mode are demonstrated Advanced Ligo Laser 2st. Step output f QR f BP from Master f QR f 20% OC HR 20% OC HR Brewster Plate Brewster Plate f QR f 80 150 50 fiber bundle 10 X 30 W 80 150 50 fiber bundle 10 X 30 W HR@1064 HT@808 f 2f f f 2f f 54 mm laser rod f QRrelay optics f with two undoped end caps 2f f 54 mm laser rod relay optics with two undoped end caps f Modeling/Overview pump light distribution Finite Element Method for calculating •temperature distribution •mechanical stress •deformation •ray tracing •analytical approximation •experimental data heat generation gain wave propagation through inhomogenous medium •finite differencing •split step fourier approach cooling calculation of optical properties k-vector •thermal lens •stress-induced birefringence Model 3 mm diameter 54 mm length assumption: cylinder symmetrical pump light distribution •model takes into account temperature dependent properties wavelength dependent absorption coefficient temperature dependent heat conducitvity temperature dependent expansion coefficient temperature dependent dn/dT Fox/Li Approach Iterative Solution of Kirchhoff integral equations initial distributed E(x,y,z0) (e. g. noise) medium free propagation mirror/aperture free propagation •inhomogenous distributed gain, refractive index, birefringence concentrated in gain/phase sheets •propagation between gain/phase sheets and in free space described by FFT propagator medium free Propagation mirror/aperture output power beam quality free Propagation no convergence ? yes Abberations/End Pumped vs. Transversally Pumped OPD, deviation from ideal lens 0,15 End Pumped Transversally Pumped OPD-OPDideal[m] 0,10 0,05 <10 nm 0,00 -0,05 -0,10 -0,2 0,0 0,2 0,4 0,6 0,8 r [mm] 1,0 1,2 1,4 1,6 Thermal Modeling/Temperature Distribution varying with pump spot diameter (pump power kept constant) 500 m Thermal Modeling/Maximum Temperature Maximum Temperature vs. Pump Spot Radius maximum temperature [°C] 140 130 120 110 100 90 80 0 1000 2000 3000 pump spot radius [m] 4000 5000 Von Mises Stress varying with pump spot diameter (pump power kept constant) 500 m Mechanical Stress/Von Mises Equivalent Stress varying with pump spot diameter (pump power kept constant) Maximum Equivalent Stress vs. Pump Spot Radius maximum equivalent stress [MPa] 150 140 130 120 110 100 90 80 70 60 50 40 0 1000 2000 3000 pump spot radius [ m] 4000 5000 Resumé •Modeling •100 W of output power will be achieveable •abberations will have to be compensated for •abberations are comparable in end pumped and transversally pumped rod •Experimental •4 diode boxes have been set up (1200 W of pump power) •temperature stabilization works •pump light homogenization has been demonstrated •45 W single mode and 75 W multi mode laser has been demonstrated (single rod, no compensation) alt. concept Face-pumping vs Edge-pumping Pumping zig-zag slab Facepumping zig-zag plane Cooling Edgepumping zig-zag plane Pumping Cooling Experimental Setup for 100W demonstration 10W LIGO MOPA System Mode-matching optics ISOL ATOR Mode-matching Output Power = 32 W optics 20 W Amplifier Lightwave Electronics Edge Pumped Slab #1 Mode-matching optics Mode-matching End Pumped Slab optics Output Power = 110 W Edge Pumped Slab #2 Pump Power = 300 W Pump Power = 420 W Output Power = 65 W 10W LIGO Laser Characteristics: • Single frequency. • TEM00 • Narrow linewidth. • Low frequency & amplitude noise. 10W Amplifier 400mW NPRO Nd:YAG Laser Head 3.8 cm End pumped slab geometry Motivation -> Higher efficiency • Near total absorption of pump light. 808nm Pump undoped end • Confinement of pump radiation leads to better mode overlap 3.33cm signal OUT 1.51cm 1.51cm 0.6% Nd:YAG signal IN 808nm Pump undoped end 1.1mm X 0.9mm What next for the 100W experiment? 10W LIGO MOPA System Mode-matching optics ISOL ATOR Mode-matching Output Power = 35 W optics 20 W Amplifier Lightwave Electronics Key: Improve absorption of pump light and achieve the expected small signal gain. Edge Pumped Slab #1 Mode-matching optics 2-pass End Pumped Slab Pump Power = 230 W Expected Output Power = 100W Scaling to 200 W : Experimental Plan 10W LIGO MOPA System Mode-matching optics 20 W Amplifier ISOL ATOR Pump Power = 130 Output TEM00Power = 50 W Lightwave Electronics 2-pass End Pumped Slab #1 Mode-matching optics 2-pass End Pumped Slab #2 TO PRE MODE CLEANER Pump Power = 430 W Expected TEM00 Output Power = 160W WBS plan manpower costing the LIGOII laser-team Laser Zentrum Hannover High-power solidstate-lasers design Max-Planck Institut University of Glasgow University of Hannover power and frequency stabilization Stanford Adelaide GEO600 pre-stabilized laser LIGOII pre-stabilized laser LIGO Lab German proposal
© Copyright 2026 Paperzz