Image Compression Based on Regression Equation Advisor: H. C. Wu, Y. K. Chan Speaker: Hsin-Nan Tsai (蔡信男) Date: May 4, 2005 1 Outline • • • • Introduction The proposed method Experimental results Conclusions 2 Introduction • • • • YIQ model Quadtree structure Edge detection Quadratic regression equation 3 Image compression • RGB Y I Q YIQ = 0.299 0.587 0.114 0.596 -0.275 -0.321 0.212 -0.523 0.311 × R G B 4 Image compression (cont.) • Quadtree 1 0 NW (128x128) 0 1 NE (128x128) 0 SW (128x128) 0 (64x64) 0 0 (64x64) SE (128x128) 0 (64x64) (64x64) Breadth First Traversal Order treelist: 1 0 0 1 0 0 0 0 0 5 Image compression (cont.) • Edge detection ∆X 129 PCD X 2 Y 2 192 188 191 ∆Y 123 192 188 185 122 178 180 183 126 173 175 175 If PCD > DiffTH Count = Count + 1 If Count > CountTH quadtree() 6 Image compression (cont.) • Quadratic regression equation I i a0 a1 Yi a 2 Yi 2 The coefficients a0, a1, and a2 of this equation can be figured out by following three equations: n n n 2 n a 0 a 1 Yi a 2 Yi I i , i 1 i 1 i 1 n n n n 2 3 a 0 Yi a 1 Yi a 2 Yi Yi I i , and i 1 i 1 i 1 i 1 n n n n 2 3 2 2 a Y a Y a Y Y Ii . 0 i 1 i 2 i i i 1 i 1 i 1 i 1 i is the i-th pixel in an image block, and n is the number of pixels in the image block. 7 Image compression (cont.) • Quadratic regression equation Qi b0 b1 Yi b2 Yi 2 The coefficients b0, b1, and b2 of this equation can be figured out by following three equations: n n n 2 n b0 b1 Yi b2 Yi Q i , i 1 i 1 i 1 n n n n 2 3 b0 Yi b1 Yi b2 Yi Yi Q i , and i 1 i 1 i 1 i 1 n n n n 2 3 2 2 b Y b Y b Y Y Qi . 0 i 1 i 2 i i i 1 i 1 i 1 i 1 i is the i-th pixel in an image block, and n is the number of pixels in the image block. 8 Image compression (cont.) • Compute coefficients a1,0 , a1,1 , a1, 2 , b1,0 , b1,1 , b1, 2 , a2,0 , a2,1 , a2, 2 , b2,0 , b2,1 , b2, 2 , , ai ,0 , ai ,1 , ai , 2 , bi ,0 , bi ,1 , bi , 2 colorlist 9 Image compression (cont.) • Compress Y values 256 100 251 … 12 … 3 25 JPEG compression Ydata 256 Y values 10 Image compression (cont.) Compressed file: treelist || colorlist || Ydata 11 Image decompression • Extract treelist Compressed file: treelist || colorlist || Ydata 3×r+1=s r is the numbers of 1-bits s is the numbers of 0-bits treelist: 1 0 0 1 0 0 0 0 0 12 Image decompression (cont.) • Extract colorlist Compressed file: colorlist || Ydata 6×s a1,0 , a1,1 , a1, 2 , b1,0 , b1,1 , b1, 2 , a2,0 , a2,1 , a2, 2 , b2,0 , b2,1 , b2, 2 , , ai ,0 , ai ,1 , ai , 2 , bi ,0 , bi ,1 , bi , 2 13 Image decompression (cont.) • Decompress Ydata 256 JPEG Decompression Ydata 101 253 … 12 … 6 25 256 Y values 14 Image decompression (cont.) • Restore quadtree root(256x256) 256 100100000 256 128x128 128x128 128x128 128x128 Y values 64x64 64x64 64x64 64x64 15 Image decompression (cont.) • Substitution coefficients root(256x256) a1,0 , a1,1 , a1,2 , b1,0 , b1,1 , b1,2 , a2,0 , a2,1 , a2,2 , b2,0 , b2,1 , b2,2 , ai,0 , ai,1 , ai,2 , bi,0 , bi,1 , bi,2 1 I i a0 a1 Yi a2 Yi 2 Qi b0 b1 Yi b2 Yi 2 256 0 0 128x128 1 128x128 0 128x128 128x128 256 0 0 64x64 0 64x64 0 64x64 64x64 YIQ values 16 Image decompression (cont.) • YIQ RGB 256 256 256 256 YIQ values Lena 17 Experimental results PSNR (dB) 40.00 F16 39.00 GIRL5 38.00 HOUSE 37.00 SAILBOAT 36.00 SPLASH 35.00 34.00 15 16 17 18 19 20 bits/per coefficient The PSNRs of the decompressed images in different sizes of regression equation coefficients 18 Experimental results (cont.) PSNR (dB) 38.00 37.00 36.00 35.00 34.00 33.00 32.00 31.00 30.00 29.00 28.00 3 4 5 F16 GIRL5 HOUSE SAILBOAT SPLASH 6 7 8 9 10 11 12 13 CR The PSNRs and CRs of the testing image compressed by JPEG method 19 Experimental results (cont.) PSNR (dB) 42.00 40.00 38.00 36.00 34.00 32.00 30.00 28.00 26.00 24.00 F16 GIRL5 HOUSE SAILBOAT SPLASH 3 4 5 6 7 8 9 10 11 12 13 CR The PSNRs and CRs of the testing image compressed by our method 20 Experimental results (cont.) The PSNRs of the testing images encoded by JPEG method in different CRs in different CRs CR 3 4 5 6 7 8 9 10 11 F16 37.07 36.59 36.12 35.67 35.23 34.81 34.40 34.00 33.62 33.25 32.89 GIRL5 36.12 35.83 35.55 35.27 35.00 34.74 34.49 34.24 34.00 33.76 33.53 HOUSE 34.38 34.17 33.96 33.76 33.56 33.37 33.18 33.00 32.82 32.64 32.47 SAILBOAT 33.44 32.91 32.40 31.91 31.44 30.99 30.56 30.15 29.75 29.37 29.01 SPLASH 36.94 36.63 36.33 36.04 35.76 35.48 35.22 34.95 34.70 34.45 34.21 Image 12 13 21 Experimental results (cont.) CR Image The PSNRs of the testing images encoded by our method in different CRs CR 3 4 5 6 7 8 9 10 11 12 13 F16 39.13 38.32 37.52 36.72 35.91 34.65 33.43 32.17 30.89 30.11 28.31 GIRL5 39.04 38.23 37.41 36.60 35.82 35.08 34.22 33.30 32.17 30.38 27.98 HOUSE 37.50 37.12 36.73 36.35 35.97 35.59 35.12 34.64 34.07 33.41 32.80 SAILBOAT 34.71 34.00 33.29 32.48 31.52 30.53 29.73 29.04 28.15 27.13 25.95 SPLASH 40.18 39.58 38.99 38.39 37.80 37.19 36.55 35.74 34.84 33.60 31.84 Image 22 Experimental results (cont.) • Blocking and Gibbs effects (a) PSNR: 31.503 dB (b) PSNR: 31.542 dB The decompressed images of GIRL4 decoded by our and JPEG methods 23 Conclusions • Comparing to JPEG, the proposed method has good performance with low compression rate 24 子宮頸癌細胞抹片影像初始輪廓切割 • Speaker: Jun-Dong Chang • Advisor: Yung-Kuan Chan, Hsien-Chu Wu • Date: 2005/05/04 25 Introduction • Automatic recognition reduces the carelessness and mistakes caused in artificial recognition. • Initial Contour Segmentation is a pre-process of ACM (Active Contour Model) System. • Initial Contour Segmentation (Background, Cytoplasm, Nucl eus) 26 Color & Texture Analyzing ~ Training Image 1 nn mi cj n n j 1 1 2 c j mi i n n j 1 1/ 2 c j mi 1 si n n j 1 i 3 nn nn 27 Color & Texture Analyzing ~ Training Image (cont.) Background Cytoplasm Nucleus 28 Regression Function (cont.) Background 29 Regression Function (cont.) Cytoplasm 30 Regression Function (cont.) Nucleus 31 Initial Contour Segmentation Db arg(min(Dx)) Dc Background Dn Query Image i = arg(min(Dx)), for x = b, c, n. 32 Initial Contour Segmentation (cont.) Background 33 Initial Contour Segmentation (cont.) Cytoplasm 34 Initial Contour Segmentation (cont.) Nucleus 35 Experimental Results ~ Image 1 36 Experimental Results ~ Image 2 37 Experimental Results ~ Image 3 38 Experimental Results ~ Image 4 39 Conclusions • Most of blocks are segmented at the correct lay ers. • Blocks of Background Layer are segmented to Cytoplasm Layer. • Regression Function just analyses 2D relation. • We have to correct segmentation errors to impr ove the accuracy of initial contour segmentation. 40 Future Work • SVM (Support Vector Machine) • Neighboring Block 41
© Copyright 2026 Paperzz