H Predictive Control Design for Discrete-Time Networked Control Systems Yiming ZHANG*. Vincent SIRCOULOMB.* Nicolas LANGLOIS* * Institut de Recherche en Systèmes Electroniques Embarqués, Avenue Galilée, BP 10024, 76801 Saint-Etienne du Rouvray, France (Tel: 0033-023-291-5823; e-mail: [email protected]). Abstract: This paper investigates H predictive control problem for a class of networked control system, and presents a method for quantitatively selecting the control weighting parameter. Based on Lyapunov function approach and H control theory, a generalized predictive state feedback controller is derived to guarantee the closed-loop networked system stable. Then, an algebraic method for selecting a feasible GPC control-weighting parameter is proposed. The contribution realizes the adaptive parameter tuning for GPC with respect to response demands and performance. A simulation example demonstrates the feasibility and practicability of the proposed method. Keywords: Lag Networks, Generalized Predictive Control, Adaptive control, H-infinity control, Parameter Optimization 1. INTRODUCTION Networked Control Systems (NCS) (Wang et al., 2008, and Hespanha et al., 2007) has been widely applied to many areas such as vehicle control or industrial process, which can realize information sharing and communication among all the devices of a system. Meanwhile, along with its advantages, network also induces new problems of time delays, packet losses, and out-of-order (Luo and Chen, 2000), which degrade the control performance of the controlled system and may even cause the system to be unstable (Zhang et al., 2001). As we know, network-induced delays are stochastic, disordering, unpredictable, and confusing. To overcome unknown delay and dropout, generalized predictive control (GPC) (Clarke et al., 1987) begins to be extended to networked systems. Its control prediction generator is designed to generate a set of future control laws in order to cover the situation of no arrival packet (Hu, Bai, Shi and Wu, 2007, Lam, Gao and Wang, 2007, and Xiong and Lam, 2007). However, ordinary GPC lacks of stability analysis and its parameters such as smooth one or control-weighting one are always designed by experience. Furthermore, few papers referring to GPC talk about the topic of disturbance problem. Motivated by the above mentioned problem, in this paper, a newly model of generalized predictive control is proposed, and based on this model, a quantized H problem for networked systems is studied. The first contribution is to solve the stability problem for generalized predictive control, and also achieve the prescribed H disturbance level. The second contribution is to provide a method of quantitative selection for the control-weighting parameter. Based on two above results, we can get a relation table between the smooth parameter and the control-weighting parameter. We assume that: when the plant is running, the predictive controller determines a proper smooth parameter by following a rule (For example, estimation through a least square algorithm). Then, it achieves an adaptive control-weighting parameter guaranteeing the system stable and better performance. A numerical example is given to illustrate the effectiveness of the proposed GPC design method. This paper is organized is as follows. Section 2 gives an introduction to the modelling of the system. Modelling of network-faced predictive control under bounded H norm is presented in section 3. The proposed method is experimented in Section 4 and concluding remarks are given in Section 5. 2. PROBLEM STATEMENT Let us consider a noisy discrete-time model obtained from the discretization of a continuous time-invariant plant with sampling time Ts . For such a networked control system, the state-space model of the physical discrete-time system is assumed to satisfy: xk 1 )xk *um EZk ° ,k t1,k Nu 1d m k ® zk Cxk ° y z X ¯ k k k (1) where at time kTs , xk m is the state vector, zk n is the output vector, yk n is the sensor’s feedback, um p is the control vector, and ) , * , C are constant matrices of appropriate dimension. ^Zk ` and ^Xk ` are Gaussian, uncorrelated, white, and zero mean processes. Hereby, we consider a class of NCS with short networkinduced delays in the forward channel (Fig. 1). Timestamps (Nilsson, 1998, and Nilsson et al., 1998) keep the same clock. Any out-of-order arrival of packets can be reordered within one buffer span. The model (1) is equivalent to the following incremental state-space model: xk 1 ) I xk )xk 1 *'um E 'Zk ° ,k t1,k Nu 1d m k (2) ® zk Cxk ° y z X ¯ k k k G where 'um um um 1 , 'Zk Zk Zk 1 , and I is the identity matrix. In practice, the priority principle of CAN bus is set to keep smooth communication in the forward channel. We are interested in designing a one-step ahead predictive controller being robust against disturbance. 3. MODELLING OF GPC For the sake of compensation for network-induced delay existing in the forward channel, the controller is designed to generate an incremental vector of predictive control laws: 'U k ^'u ` T T ,'ukT1 k ,...,'ukT N 1 k kk u (3) where 'ui j is the incremental control low for time iTs based on the states at time jTs . The first control signal will be sent to the actuator via the network as usual. We know it is impossible to avoid one sampling period delay. The system indeed becomes a timedelay system. 7k ª C* 0 « C I C ) * * « « # « Nu 2 « Nu 1 i i «C ¦ ) * C ¦ ) * 0 0 i i « « # # « N 1 N 2 « C ¦ )i* C ¦ )i* «¬ i 0 i 0 ° N E ® ¦ yk j k J k j °¯ j N1 2½ Nu Hence, the optimal future outputs can be simplified by the vector form: (7) Yˆk G 'U k 7 k Defining j ¿ j (4) h yk j k ¦ C) i 1xk 1 ¦ C ) i 1xk ¦ ¦ C ) h i *'uk j h k i 1 i 2 j h ¦ ¦ C) h 2i 2 h i h 2i 2 j (5) (6) ¦ ¦ C ) h i *'uk j h k h 2i 2 The topic about how to compute the expectations E> xk @ and E> xk 1 @ have been discussed (Zhang et al., 2013). Let us define: J k ,'U k ª ˆT º T T «¬ yk 2 k , yˆ k 3 k ,..., yˆ k N k »¼ , ª T º T T «¬ 'uk k ,'uk 1 k ,...,'uk Nu 1 k »¼ , T ` T (8) Taking into account packet dropouts and delay in the feedback channel, the future reference trajectory is specially designed by the expectation of output, which is given by the following rule: J k 2 D y k 2 1D J k J k j D j -1 y k j 1D j -1 J k , j t 3 So, ªD 0 « 2 «0 D Rk « # % « «¬ 0 " $ Yˆ $ By T 'U k ^ E >Yk Rk @ >Yk Rk @'U kT O'U k ª¬Yˆk Rk ¼º ¬ªYˆk Rk ¼º 'U kT O'U k b k T Yˆk ª T º T T «¬ yk 2 k , yk 3 k ,..., yk N k »¼ , where D is the smooth parameter, 0dD d1 . j h T ªJ kT 2 ,J kT3 ,...,J kT N º , ¬ ¼ We get the vector form of the cost function: The optimal predictor of yk j k is: j ` diag O1 ,O2 ,...,ONu , Rk E 'Zk 1 j h Xk j yˆ k j k E ª yk j k º ¦ C )i 1E> xk 1 @ ¦ C ) i 1E> xk @ ¬ ¼ i 1 i 2 ^ O Yk where J k is the future reference trajectory, N is the maximal predictive horizon, N1 is the minimal predictive horizon ( N1 2 for this situation, jt 2 , and N N1 t N u ), N u is the control horizon and O j is the weighting sequence, and where yk j k is the j-step future output computed as follows: j 01 xˆ k 1 0 2 xˆ k T j¦1O j 'uk j 1 k °¾° 2 0 # 0 ª 1 iº ª 1 iº «C ¦ ) » «C¦) » « i 0 » « i 1 » « 2 i» « 2 i» «C ¦ ) » «C¦) » ª º E x « i 0 » ¬ k 1 ¼ « i 1 » E ª¬ xk º¼ « » « » # # « » « » « N 1 )i » « N 1 ) i » «C ¦ » «C ¦ » ¬ i 0 ¼ ¬ i 1 ¼ We can choose the cost function as the following form: J k ,'U k º » » » » » C* " » » » " # » N Nu " C ¦ )i* » »¼ i 0 N N1 *Nu " % % 0 º ª 1D º ª 1D º » « « 2 » 2 » % # » « 1D » « 1D » ˆ E Yk « J k D Yk « Jk % # » # » 0 » » « » « » «¬1D N -1 »¼ «¬1D N -1 »¼ 0 D N -1 »¼ " aJ k minimizing the wJ k ,'U k w'U k 0 , then 'U k cost ª I $b GT I $b G O I º ¬ ¼ function 1 following I $b G T ¬ª $aJ k I $b 01xˆk 1 I $b 0 2 xˆk º¼ (9) For the sake of simplicity, let us introduce the symbol Ei for 1 ) I xk xk 1 denoting every row of + ª¬ I $b GT I $b G O I º¼ : Ei ª0 1 01* Nu i 1 º ¬ 1i ¼ T ª º ¬) I *E1+ I Ab G I Ab 01 ¼ xk The component in the control horizon computed at time k d Ts is then: T E d + I $b G ª¬ $aJ k d I $b 01xˆk 1 d I $b 0 2 xˆk d º¼ (10) ª¬)*E1+ I Ab GT I Ab 0 2 º¼ xk 1 E 'Z k 4[ k where 4 ª*E1+ I Ab GT I Ab 01 *E1+ I Ab GT I Ab 0 2 ¬ *E1+ I Ab GT $a º ¼ T [ k ª xkT xkT1 J kT1 º . ¼ ¬ where 1d d d Nu 1 . According to this control law, in fact, generalized predictive control is equivalent to state feedback control. The interest of this paper is to stabilize the system (1) by a proper gain. The functional relationship between the gain and the controlweighting parameter O provides a method of quantitative selection. For the time-delay system (2), we design a one-step ahead predictive control law as H controller, which should satisfy: Given a positive constant r and zero initial condition, if zk 2 d r 'Zk 2 is satisfied for 'Zk A 2 [0,f ) , the closed-loop system (2) is H norm stabilizable. Lemma 1(The Schur complement lemma (Zhang, 2005, and Haynsworth, 1968)): Given constant matrices s1 , s2 , s3 of appropriate dimensions where s1 and s2 are symmetric, then s2 !0 and s1 s3T s21s3 0 if and only if Hereby, the separation principle is guaranteed to be applicable and allows for reducing the study of the closedloop dynamic to a simplified stabilization problem. ª) I *E1+ I $b GT I $b 01 º x ¬ ¼ k xk 1 ª¬)*E1+ I $b GT I $b 0 2 º¼ xk 1 E 'Zk We assume that there exist positive symmetric matrices P and Q . Then, we can choose the following Lyapunov function: 'Vk Vk 1 Vk T T T T xk 1 Pxk 1 xk Qxk xk Pxk xk 1Qxk 1 xk 1 Pxk 1 xk Q P xk xk 1Qxk 1 T ª xk º « » « xk 1 » « 'Z » ¬ k¼ s3 º » 0 . s1 ¼» º » » » d 0 (11) r2 » » PE P¼» 0 0 where X P*E1+ and the stars means its corresponding transpose matrix: ZT º ª » « ¼» ¬ Z (12) T xk 1Qxk 1 Its forward differential equation is given by: Theorem 1: For a given r !0 , if there exist symmetric positive definite matrices P and Q such that LMI (11) is solvable, then the closed-loop system (2) is H norm stabilizable. ª « ¬« Z k 1 i k d T xk Pxk or equivalently ª QPCTC 0 « 0 Q « « 0 0 « « T T ¬«P)PX I Ab G I Ab 01 X I Ab G I Ab02P) T xk Pxk ¦ xiT Qxi Vk ª s1 s3T º « » 0 , «¬ s3 s2 »¼ ª s2 « T ¬« s3 T I Ab 01xˆk I Ab 0 2 xˆk 1 º¼ E 'Zk where 0nm is the null matrix with n lines and m columns. 'u k k d )xk 1 *E1+ I Ab G ª¬ $aJ k 1 º » ¼ Proof: substituting the first control signal at time k 1Ts into the system and considering xk xk xˆk , T T ªQ P «« 0 «¬ 0 T Tº §ª T ¨ « ¬ª ) I *E1+ I $b G I $b 01 ¼º » ¨« T » ¨« ª T º » ¨ « ¬ *E1+ I $ b G I $ b 0 2 ) ¼ » P>u@ ¨« » ET ¨« » ¨ ¼ ©¬ 0 0 º · ª xk º ¸« » Q 0 »» ¸ « xk 1 » 0 0 »¼ ¸¹ «¬ 'Zk »¼ where for any matrix Z: ZP>u@ ZPZ T . The H cost function H is: H f f ¦ ª zTk zk r 2 'ZkT 'Zk º d ¦ ª zkT zk r 2 'ZkT 'Zk º Vk ¼ k 0¬ ¼ k 0¬ f ¦ ª zkT zk r 2 'ZkT 'Zk 'Vk º ¼ k 0¬ Tº § ªª ) I *E1+ I $b G T I $b 01 º » ° T ¨ «¬ ¼ ° ª xk º ¨ « f ° T » ¦ ® «« xk 1 »» ¨ « ª *E1+ I $b G T I $b 0 2 ) º » P>u@ ¼ » ¨« ¬ k 0° « 'Z » ¨ » T °¬ k ¼ ¨ « E « » ¨ ° ¼ ©¬ ¯ Table1. Results of H norm-based parameter tuning ½ 0 º · ª xk º ° » ¸« ° 0 » ¸ « xk 1 »» ¾ ° »¸ r 2 ¼ ¸¹ «¬ 'Zk »¼ °¿ Hereby, we consider a rule that a lower smooth parameter is selected online when a larger difference of the reference is detected. We expect to lower the overshoot. Then, we introduce the following time-varying reference (Fig. 1) to test the control performance. ªQ P C T C « « 0 « 0 ¬ 0 Q 0 According to lemma 1, D 0.2 0.5 0.7 O 0.0043 0.0021 0.0011 40 T ªª T º º «¬)I *E1+ I $b G I $b 01¼ » ªQPCTC 0 0 º « « » T » « ª*E + I $ GT I $ 0 )º » P >u@ « Q 0 » d 0 0 b b 2 ¼ » «¬ 1 « » « » T 0 0 r2 ¼» ¬« E « » ¬ ¼ Reference 30 T ªª T º º «¬P)PP*E1+ I $b G I $b 01¼ » ªQPCTC 0 0 º « T » 1 » T « ªP*E + I $ G I $ 0 P)º »P >u@«« Q 0 0 »d0 2 b b ¼ » « ¬ 1 » « « » 0 0 r2 ¼ ¬ PET « » ¬ ¼ ª QPCTC 0 0 º « » Q 0 0 » « « »d0 r2 » 0 0 « « » T T ¬«P)PX I $b G I $b 01 X I $b G I $b 02 P) PE P»¼ 20 10 0 −10 0 P X K ª*T *E1K T **T K I $b GT I $b GK T *º ¼ * KK * ¬ T 1015 1525 D =0.7 D =0.7 D =0.7 Case 2 D =0.7 D =0.5 D =0.5 Case 3 D =0.7 D =0.5 D =0.2 80 Consider a discrete linear time-invariant plant like (1) with sampling period Ts 0.1s , and: ª1 º « »,C ¬0 ¼ [0.5 0.1], E ZkT ~ N 0,Q with variance Q X kT ~ N 0, R with variance R ª0.1º « »; ¬0.1¼ 20 I 3 ; 2.5 . where I m denotes the identity matrix of dimension m . Considering r 1 , Nu 3 and N 4 , this paper selects three smooth parameters for samples. By means of Matlab LMI toolbox, we compute corresponding feasible solutions based on theorem 1. case 1 case 2 case 3 60 Control signal 4. SPECIAL CASES AND EXAMPLES ª1.2 0.7 º « »,* 0 ¼ ¬1 010 Case 1 According to Tab. 2, we obtain the simulation results of control signals and outputs: Proof done ) Simulation period (13) 1 T 25 Table2. Three situations for parameter tuning *E1 K ª I $b GT I $b GO I º ¬ ¼ O1 20 Taking account of two sudden jumps at time 10s and 15s, the controller would change the smooth parameter to improve the performance. For comparison, we suppose three situations (case 1 with a constant parameter; case 2 for a sudden jump; case 3 for two sudden jumps) to illustrate the advantage of the designed adaptive control. If this LMI is solvable by a bounded r , the networked control system is H norm stabilizable. O can be computed by: *E1+ 10 15 Simulation time (s) Fig. 1. Reference of the plant. where X P*E1+ . 1 5 40 20 0 −20 −40 0 5 10 15 Simulation time (s) Fig. 2. Control signal of the plant. 20 25 50 case 1 case 2 case 3 System output 40 30 20 10 0 −10 −20 0 5 10 15 Simulation time (s) 20 25 Fig. 3. Output of the plant. case 1 case 2 case 3 Output Error 40 20 0 −20 0 5 10 15 Simulation time (s) 20 25 Fig. 4. Output errors. Figure 4 demonstrates that case 3 achieves the smallest difference. For three cases, it is clear that the presented selfadaptation approach can lower the system overshoot and smooth the system response. The computation and selection of parameters can be automatically finished online. Meanwhile, a larger smooth parameter will lead to static error, which refers to case 1 (Fig. 3). As a result, we can find that the results keep the similar law with the rule from experience. 5. CONCLUSION This paper provides a necessary and sufficient condition for the stabilization problem of generalized predictive controller under the bounded H norm. Based on LMI, Lyapunov and H control theory, a discrete LMI-based theorem has been presented and the control-weighting parameter can be quantified by a derived algebraic method. It realizes the adaptation control for GPC with the self-adjustable smooth parameter and the online computed control-weighting parameter, especially for the reference with sudden jumps. As a result, simulation demonstrates that computed LMIbased feasible solutions can keep the system stable under H norm and the environment of network-induced delay. REFERENCES Chabir, K., Sauter, D., Gayed, K.B., and Abdelkrim, N. (2008). Design of an Adaptive Kalman Filter for Fault Detection. Proceedings of the 16th Mediterranean Conference on Control and Automation, Volume (1), 1124-1129. Clarke, D.W., Mohtadi, C., and Tuffs, P.S. (1987). Generalized Predictive Control, Part1 and Part 2. Automatica, Volume (23), 137-160. Haynsworth, E.V. (1968). On the Schur Complement. Basel Mathematical Notes, BMN 20, 17. Hespanha, J., Naghshtabrizi, P., and Xu, Y. (2007). A Survey of Recent Results in Networked Control Systems. Proceedings of the IEEE, Volume (95), 138-162. Hu, L.S., Bai, T., Shi, P., and Wu, Z.M. (2007). Sampleddata Control of Networked Linear Control Systems. Automatica, Volume (43), 903-911. Lam, J., Gao, H.J., and Wang, C.H. (2007). Stability Analysis for Continuous Systems with Two Additive Timevarying Delay Components. Systems & Control Letters, Volume (56), 16-24. Luo R.C., and Chen, T.M. (2000). Development of A Multibehavious-based Mobile Robot for Remote Supervisory Control Through the Internet. IEEE Transaction on Mechatronics, Volume (5), 376-385. Nilsson, J. (1998). Real-Time Control Systems with Delays, Ph.D. Thesis. Dept. Automatic Control, Lund Institute of Technology, Lund Sweden. Nilsson, J., Bernhardsson, B., and Wittenmark, B. (1998). Stochastic Analysis and Control of Real-time Systems with Random Time Delays. Automatica, Volume (34), 57-64. Wang, F.Y., and Liu, D.R. (2008). Networked Control Systems: Theory and Applications. Springer-Verlag, London. Xiong, X.L. and Lam, J. (2007). Stabilization of Linear Systems over Networks with Bounded Packet Loss. Automatica, Volume (43), 80-87. Zhang, F.Z. (2005). The Schur Complement and Its Applications. Springer, New York. Zhang, W., Branicky, M.S., and Phillips, S.M. (2001). Stability of Networked Control Systems. IEEE Control Systems Magazine, Volume (21), 84-99. Zhang, Y.M., Sircoulomb, V., and Langlois, N. (2013). Kalman Filtering for Discrete-time Networked Control Systems with Incomplete Observations: A Dropping Over-delayed Packets Approach. 4-6 February 2013, Grenoble, France.
© Copyright 2026 Paperzz