Some new equations presented at NCSU 2011-06-28 Peter Lohmander 1 max ( x(t ),...) m(t ) x(t ) F (t ) B(t ) P(t ) dt x ( t ),... 0 In general, (.) Is strictly concave, with a maximum that gives the ”ideal climate”. Subject to dynamic equations and constraints. dm 0 dt ? m(t ) m 1 ? 2 max ( x(t ),...) m(t ) x(t ) F (t ) B(t ) P(t ) dt x ( t ),... 0 If we replace the nonlinear objective function by a linear objective funcion, this could lead to extreme variations and make sustainability impossible. dm 0 dt ? m(t ) m 1 ? 3 With “complete rotation forestry”: _ x(T ) h T 4 In case of continuous harvesting: h(t ) E (t ) k E (t ) k h(t ) E k h dE 1 dh 5 In general: _ _ dF k h dt _ dF F ( ) F (0) dt 6 F ( ) F (0) h k _ dF ( ) _ dh _ _ dx dF _ dh _ dh for T 7 d x _ dh lim 0 _ d F _ d h _ 8 _ d x _ dh lim 0 _ dF _ dh Focus on replacing coal by biomass! The carbon stored in the forest is almost irrelevant compared to the substitution effect in the long run. 9 Forestry with maximum harvest in relation to forestry with maximum carbon in the forest 10 Derivation of a “carbon optimal” harvest rule using a simple functional form that can be generalized. x(t ) a bt ct a bt ct h t _ _ 2 2 1 h at b ct 11 _ dh 2 at c 0 dt 2 _ d h 3 2 at 0 2 dt 12 h d 2 0 at c dt a 2 t c _ t t * a c 13 a a x(t ) a b c c c * a x(t ) 2a b c * a a h(t ) bc c a c _ * _ h(t * ) ac b ac _ h(t * ) 2 ac b 14 Numerical example: x(t ) a bt ct 2 x(t ) 40 10t 0.1t 2 15 First: Let us maximize the average harvest level based on rotation forestry: a t c * 40 t 400 20 0.1 * 16 x(t ) a bt c (t ) * * * 2 x(t ) 40 10(20) c(20) * 2 x(t ) 40 200 0.1(400) * x(t ) 120 * 17 a * h(t ) * b ct t _ 40 * h(t ) 10 0.1(20) 20 _ _ * h(t ) 2 10 2 _ * h(t ) 6 * 18 Second: Let us maximize the stock level of the forest: x(t ) a bt ct 2 x(t ) 40 10t 0.1t 2 19 dx b 2ct 0 dt 2 d x 2c 0 2 dt dx 0 b 2ct dt b 10 t 50 2c 0.2 20 x(t ) 40 10(50) 0.1(2500) x(t ) 40 500 250 x(t ) 210 _ 210 h(t ) 4.2 50 21 Optimal combination of carbon storage and timber production: - Joint production and rational adaption to different conditions Z w1( x) w2( x) 22 3 2 ( x) 3x x 4 23 3 2 ( x) 3x x 4 4 1 2 ( x) x x 3 9 24 Numerical example: Z w1 ( x) w2 ( x) 3 2 1 2 4 Z w1 3x x w2 x x 4 9 3 25 Optimal forest management decision rule with two objectives: dZ 3 4 2 w1 3 x w2 x 0 dx 2 3 9 2 d Z 6 2 w w 0 1 2 2 dx 4 9 26 dZ 0 dx 3 4 2 * * 3w1 w1 x w2 w2 x 0 2 3 9 4 2 * 3 3w1 w2 w1 w2 x 3 9 2 4 3w1 w2 * 3 x 3 2 w1 w2 2 9 27 4 3w1 w2 * 3 x 3 2 w1 w2 2 9 28 • How should forestry be adapted to roundwood net price changes and carbon storage subsidy changes? • (OR: Why should you not manage all forest stands in exacctly the same way?) dZ 3 4 2 w1 3 x w2 x 0 dx 2 3 9 2 dZ 3 4 2 d Z * * * d 3 x dw1 x dw2 2 dx 029 dx dx 2 3 9 4 3w1 w2 * 3 x 3 2 w1 w2 2 9 30 2 4 3 3 3 w1 w2 3w1 w2 * dx 2 9 3 2 2 dw1 2 3 w1 w2 9 2 4 w2 * dx 3 2 dw1 3 2 w1 w2 9 2 * dx 0 for w2 0 dw1 31 dx* dw2 dx* dw2 43 2 4 2 w1 w2 3w1 w2 32 9 3 9 2 2 3 w1 w2 9 2 4 w1 3 2 2 3 w1 w2 9 2 * dx 0 dw2 for w1 0 32 The End 33
© Copyright 2026 Paperzz