CHAPTER 3
WEIGHTED UPWINDING COMPACT SCHEME (WUCS)
3.1 Numerical Formula
A Weighted Upwinding Compact Scheme (WUCS) uses the idea of Weighted
Compact Scheme (WCS) to increase the order at each stencil. Also, WUCS applies the
bias weight from the WENO scheme at each stencil according to the smoothness of
each one. In the present section, a brief description for each scheme that related to
WUCS is provided.
3.1.1. Essentially Non-Oscillatory (ENO) scheme and conservative reconstruction
In 1987, Harten, Osher, Engquist, and Chakravarthy introduced the ENO scheme
in the form of cell averages. Among several stencils, the ENO scheme chooses the
smoothest one to approximate the fluxes at cell boundaries to increase the order and to
reduce oscillations near the boundaries. The conservative property of the scheme is
essential, especially when dealing with problems that have discontinuities because large
errors will be generated near discontinuities when using neoconservative methods. One
problem with the finite difference compact schemes is the conservative property of the
schemes. The cell-averaged version of the ENO scheme is costly and complicated for
multi-dimensional problems because of the procedure of reconstructing point values from
cell averages. Hence, to avoid this reconstruction procedure, the flux version of the ENO
scheme was introduced by Shu (1988) and Osher (1989). In this work, the ENO
16
reconstruction method is used together with a weighted compact scheme to obtain
conservation as described below (Shu & Osher, 1988, 1989). For 1-D conservation laws,
๐ข๐ก (๐ฅ, ๐ก) + ๐๐ฅ (๐ข(๐ฅ, ๐ก)) = 0
(3.1)
After discretizing the domain, the cell interface (grid), the cell center, and the cell size
are defined as follows, respectively.
๐ = ๐ฅ1/2 < ๐ฅ3/2 < ๐ฅ5/2 < โฏ < ๐ฅ๐โ1 < ๐ฅ๐+1 = ๐
2
(3.2)
2
1
๐ฅ๐ = 2 (๐ฅ๐โ1 + ๐ฅ๐+1 )
2
(3.3)
2
โ = ๐ฅ๐+1 โ ๐ฅ๐โ1 , ๐ = 1,2, โฆ , ๐
2
2
Figure 3.1 below illustrates the grid above where the triangles denote the cell interfaces
(3.2), and the circles denote the cell centers (3.3).
๐ฅ๐โ7
๐ฅ
๐โ
2
๐ฅ๐โ3
๐ฅ๐โ3
5
2
๐ฅ๐+3
2
2
๐ฅ๐
๐ฅ๐โ1
๐ฅ๐โ2
๐ฅ๐+1
๐ฅ๐โ1
2
๐ฅ
๐+
2
๐ฅ๐+1
๐ฅ๐+2
Figure 3.1. Grid for 1-D case.
A semi-discrete conservative form of (3.1) can be described when a conservative
approximation to the spatial derivative is applied as follows:
๐๐ข๐
๐๐ก
โ(๐ฬ
=
๐+
1 โ๐ฬ 1 )
๐โ
2
2
โ
where ๐ฬ is the numerical flux,
17
(3.4)
5
2
๐ฅ
โซ๐ฅ
๐๐ = ๐ (๐ข(๐ฅ๐ , ๐ก)) =
1
๐+
2 ๐ฬ (๐)๐๐
1
๐โ
2
โ
,
(3.5)
h is the step size in the x-direction, and H is the primitive function of ๐ฬ defined as
๐ฅ
1
๐ฅ 1
๐
๐
๐+ ฬ
๐+ ฬ
2 ๐ (๐)๐๐ = โ
2
๐ป๐+1 = ๐ป (๐ฅ๐+1 ) = โซโโ
๐=โโ โซ๐ฅ 1 ๐ (๐)๐๐ = โ๐=โโ ๐๐ โ
2
2
(3.6)
๐โ
2
(๐ป
1 โ๐ป 1 )
๐+
๐โ
2
2
๐๐ =
๐ปโฒ๐+1 = ๐ฬ๐+1
2
โฒ
๐ (๐ฅ๐ ) =
, ๐ปโฒ๐โ1 = ๐ฬ๐โ1
2
๐๐โฒ
(3.7)
โ
(๐ฬ
=
2
๐+
1 โ๐ฬ 1 )
๐โ
2
2
โ
(๐ปโฒ
=
(3.8)
2
๐+
1 โ๐ปโฒ 1 )
๐โ
2
2
โ
(3.9)
The described procedure above can be illustrated as follows:
๐ โ ๐ป โ ๐ปโฒ = ๐ฬ โ ๐ โฒ
Indeed, the only approximation involved is the calculation of the derivative of the
primitive function ๐ป. The ENO scheme is successfully applied to many numerical
experiments, but it has some drawbacks. One problem with the ENO scheme is the high
cost of heavy usage of logical statements. Another problem is the free adaptive stencil,
which is not required for smooth regions.
3.1.2. 5th order Weighted Essentially Non-Oscillatory (WENO) scheme
To keep the advantages of the ENO scheme and overcome its drawbacks, Liu, Osher, and
Chan proposed the Weighted Essentially Non-Oscillatory (WENO) scheme. The main
idea of the WENO scheme is to assign optimal weights for all stencils to get a high order
18
scheme in smooth areas and to assign bias weights near discontinuities to avoid the stencil
containing a shock.
3.1.2.1. Flux approximation
In order to get the derivative of the given function f at the point x(j), first the
approximation of ๐ปโฒ๐+1 = ๐ฬ๐+1 is needed. Three candidates are given from the three
2
2
stencils,
๐ 0 = {๐น๐โ2 , ๐น๐โ1 , ๐น๐ } , ๐ 1 = {๐น๐โ1 , ๐น๐ , ๐น๐+1 } , and ๐ 2 = {๐น๐ , ๐น๐+1 , ๐น๐+2 }
(3.10)
as shown in figure 3.2.
2
S0
๐ฅ๐โ30
๐ฅ๐โ5
๐ฅ๐โ1
2
2
๐ฅ๐+1
2
2
S
๐ฅ๐+3
2
๐ฅ๐+5
2
1
S
Figure 3.2. The stencils for the WENO scheme.
Each candidate is a third order polynomial, which can be found as follows.
For the left stencil ๐ 0 = {๐น๐โ2 , ๐น๐โ1 , ๐น๐ }, let
๐ปโฒ๐+1 = โ ๐น๐โ2 + ๐ฝ๐น๐โ1 + ๐พ๐น๐
(3.11)
2
Substituting (3.7) in (3.11) results in
๐ปโฒ๐+1 =
โ (๐ป๐โ2+1 โ ๐ป๐โ2โ1 ) + ๐ฝ(๐ป๐โ1+1 โ ๐ป๐โ1โ1 ) + ๐พ(๐ป๐+1 โ ๐ป๐โ1 )
2
2
2
2
2
โ
2
โ ๐ปโฒ๐+1 = โ๐ผ๐ป๐โ2 + (โ โ๐ฝ)๐ป๐โ1 + (๐ฝ โ ๐พ)๐ป๐ + ๐พ๐ป๐+1
19
2
Letting h=1, j=0, and H=1,x,x2,x3 gives the following system of equations:
1 =โ +๐ฝ + ๐พ
2 = โ3 โ โ๐ฝ + ๐พ
3 = 7 โ +๐ฝ + ๐พ
1
Hence,
๐ 0 : ๐ปโฒ
(๐ 0 )
๐+
7
โ= 3 , ๐ฝ = โ 6 , and ๐พ =
The solution of the above system is
1
2
1
7
= 3 ๐น๐โ2 โ 6 ๐น๐โ1 +
11
11
6
๐น๐
(3.12)
= โ 6 ๐น๐โ1 + 6 ๐น๐ + 3 ๐น๐+1
(3.13)
6
Similarly,
๐1: ๐ปโฒ
(๐ 1 )
1
๐+
2
๐ 2 : ๐ปโฒ
(๐ 2 )
๐+
1
2
1
1
5
5
1
1
= 3 ๐น๐ + 6 ๐น๐+1 โ 6 ๐น๐+2
(3.14)
3.1.2.2. Optimal weights for a high order accuracy
A weighted average of the three stencils is considered with constant weights ๐ 0 , ๐ 1 , and
๐ 2 , such that
๐ = ๐ 0 ๐ 0 + ๐ 1 ๐ 1 +๐ 2 ๐ 2
(3.15)
For consistency of the scheme, (3.16) below should be satisfied
โ2๐=0 ๐ i = 1
(3.16)
Substituting (3.12), (3.13), and (3.14) in (3.15) implies that
1
7
11
1
5
๐ 0 ๐ปโฒ๐+1 + ๐1 ๐ปโฒ๐+1 + ๐ 2 ๐ปโฒ๐+1 = ๐ 0 ( ๐น๐โ2 โ ๐น๐โ1 +
๐น๐ ) + ๐ 1 (โ ๐น๐โ1 + ๐น๐
3
6
6
6
6
2
2
2
1
1
5
1
+ ๐น๐+1 )+๐ 2 ( ๐น๐ + ๐น๐+1 โ ๐น๐+2 )
3
3
6
6
20
1
7
11
3
6
6
๐ปโฒ๐+1 = ๐ 0 ( ๐น๐โ2 โ ๐น๐โ1 +
2
1
5
1
1
5
1
6
6
3
3
6
6
๐น๐ ) + ๐1 (โ ๐น๐โ1 + ๐น๐ + ๐น๐+1 )+๐ 2 ( ๐น๐ + ๐น๐+1 โ ๐น๐+2 )
(3.17)
From (3.16), we have
๐ 0 + ๐1 + ๐ 2 = 1
The two other equations can be found by letting h=1, j=0, and H=x4,x5 in (3.17).
Finally, when solving a 3x3 system, we have
1
6
3
๐ 0 = 10 , ๐ 1 = 10 , ๐ 2 = 10
(3.18)
Now, substituting (3.18) in (3.17) gives
๐ปโฒ๐+1 = โ2๐=0 ๐ i ๐ปโฒ
(๐ i )
1
๐+
2
2
1
13
47
9
1
= 30 ๐น๐โ2 โ 60 ๐น๐โ1 + 60 ๐น๐ + 20 ๐น๐+1 โ 20 ๐น๐+2
(3.19)
Applying (3.19) in (3.9) leads to
๐น โฒ๐ =
1
30
1
4
1
3
1
2
1
20
(โ ๐น๐โ3 + ๐น๐โ2 โ๐น๐โ1 + ๐น๐ + ๐น๐+1 โ ๐น๐+2 )
โ
(3.20)
Using the Taylor expansion for ๐น๐โk results in
๐นฬ
๐น โฒ๐
โ
ฬ 1
1 โ๐น
๐+
๐โ
2
2
โ
1
(6)
= 60 โ5 ๐น๐
1
(7)
โ 140 โ6 ๐น๐
1
(8)
+ 240 โ7 ๐น๐
+โฏ
(3.21)
(3.21) shows that the scheme with optimal weights and 6 grid points has a 5th order
truncation error, and it is the standard 5th order bias upwind finite difference scheme.
3.1.2.3. Non-linear weights for shock capturing
The use of the constant weights ๐ 0 , ๐ 1 , and ๐ 2 does not allow for an adaptive scheme
according to the โsmoothnessโ of the stencils. The non-linear weights of the WENO
scheme adaptively chose each stencil due to its smoothness, and they are defined as
follows:
21
๐
๐๐±
1
2
โ๐ 1
๐±
2
๐
๐=0 โ๐±1
2
= โ2
๐
, โ๐±
1=
2
๐i
๐
,
๐ = 0,1,2
(3.22)
(๐+๐ผ๐ ๐ 1 )
๐±
2
where ๐ is a small quantity to avoid the division by zero, and p is an integer number.
๐
For consistency of the scheme, we must satisfy โ2๐=0 ๐๐±
1 = 1.
2
๐
๐ผ๐๐±
1 is a โsmoothnessโ indicator calculated by
2
13
2
1
13
2
1
13
2
1
0
๐ผ๐๐±
(๐น โ 2๐น๐โ1 + ๐น๐ ) + 4 (๐น๐โ2 โ 4๐น๐โ1 + 3๐น๐ )
1 =
12 ๐โ2
2
2
1
๐ผ๐๐±
(๐น โ 2๐น๐ + ๐น๐+1 ) + 4 (๐น๐โ1 โ ๐น๐+1 )
1 =
12 ๐โ1
2
(3.23)
2
2
๐ผ๐๐±
(๐น โ 2๐น๐+1 + ๐น๐+2 ) + 4 (๐น๐+2 โ 4๐น๐+1 + 3๐น๐ )
1 =
12 ๐
2
2
Finally, we have
๐
(๐ )
๐
๐นฬ๐±1 = ๐ปโฒ๐±1 = โ2๐=0 ๐๐±
1 ๐ปโฒ 1
2
2
2
๐±
2
3.1.2.4. Boundary points schemes
The following schemes are special 3rd order schemes for the boundary points:
Point 0,
11
7
1
๐นฬ๐โ1 = 6 ๐น๐โ1 โ 6 ๐น๐ + 3 ๐น๐+1
2
Point 1,
1
5
1
๐นฬ๐โ1 = 3 ๐น๐ + 6 ๐น๐+1 โ 6 ๐น๐+2
2
Point 2,
1
5
1
๐นฬ๐โ1 = โ 6 ๐น๐โ2 + 6 ๐น๐โ1 + 3 ๐น๐
2
Point N-1,
1
5
1
๐นฬ๐โ1 = โ 6 ๐น๐โ1 + 6 ๐น๐ + 3 ๐น๐+1
2
Point N,
1
7
11
๐นฬ๐โ1 = 3 ๐น๐โ2 โ 6 ๐น๐โ1 + 6 ๐น๐
2
22
(3.24)
The WENO scheme is a successful scheme by many users. However, some researchers
in the DNS/LES community consider the scheme too dissipative for flow transition and
turbulence because it has a 5th order dissipation everywhere, and it is a 3rd order
dissipation near the shock. Also, the cost associated with the WENO scheme is a little
high because of the complexity of calculating the weights in each stencil at each iteration
step.
3.1.3. The finite difference Compact Scheme (CS)
With a uniform grid (Figure 3.3.), consider ๐ฅ๐ = โ(๐ โ 1), ๐๐ = ๐(๐ฅ๐ ), and ๐๐โฒ as the
independent variable, the given function value, and the finite difference approximation to
the first derivative of the function f at the point j for 1 โค ๐ โค ๐ respectively.
Figure 3.3. 1-D grid for the compact scheme.
The main idea of the compact schemes is to increase the order of the scheme by involving
the function and its derivatives at the same given points. In the non-symmetric finite
difference compact scheme (CS) (Lele, 1992), ๐๐โฒ can be computed using the following
formula:
โฒ
โฒ
โฒ
โฒ
๐ฝโ ๐๐โ2
+ ๐ผโ ๐๐โ1
+ ๐๐โฒ + ๐ผ+ ๐๐+1
+ ๐ฝ+ ๐๐+2
=
๐โ ๐น๐โ3 +๐โ ๐น๐โ2 +๐โ๐น๐โ1 +๐+ ๐น๐+1 +๐+ ๐น๐+2 +๐+๐น๐+3
โ
(3.25)
The relations between the coefficients ๐ผ+ , ๐ผโ , ๐ฝ+ , ๐ฝโ , ๐+ , ๐โ , ๐+ , ๐โ , ๐+ , and ๐โ are
derived by matching the Taylor series coefficients of various orders or using f(x)=1,x,x2,
23
โฆ, xk. The first unmatched coefficients determine the formal truncation error of the
approximation above. For the symmetric CS, the scheme can be constructed using the
formula below:
๐ฝ๐นโฒ๐โ2 + ๐ผ๐นโฒ๐โ1 +๐นโฒ๐ + ๐ผ๐นโฒ๐+1 + ๐ฝ๐นโฒ๐+2 = ๐
๐น๐+3 โ๐น๐โ3
6โ
+๐
๐น๐+2 โ๐น๐โ2
4โ
+๐
๐น๐+1 โ๐น๐โ1
2โ
(3.26)
Letting h=1, j=0, and F=1, x in (3.26) gives a 2nd order approximation as follows:
๐ฝ โ 1 + ๐ผ โ 1+๐น โฒ๐ + ๐ผ โ 1 + ๐ฝ โ 1 = ๐
Hence,
3โ โ (โ3โ)
2โ โ (โ2โ)
โ โ (โโ)
+๐
+๐
6โ
4โ
2โ
๐ + ๐ + ๐ = 1 + 2๐ผ+2๐ฝ
3!
Similarly, ๐ + 22 ๐ + 32 ๐ = 2 2!(๐ผ+22 ๐ฝ)
(4th order)
5!
(6th order)
7!
(8th order)
9!
(10th order)
๐ + 24 ๐ + 34 ๐ = 2 4!(๐ผ+24 ๐ฝ)
๐ + 26 ๐ + 36 ๐ = 2 6!(๐ผ+26 ๐ฝ)
๐ + 28 ๐ + 38 ๐ = 2 8 (๐ผ+28 ๐ฝ)
Although the idea of CS can increase the order of the scheme without increasing the
number of the grid points, it cannot capture the shocks because of the global dependence
on the data set.
3.1.4. Weighted Compact Scheme (WCS)
WCS aims to use a weighted average of two 3rd order and one 4th order approximations
for the numerical flux where each approximation involves the primitive function H and
its derivative at different points. To obtain the approximations for ๐ปโฒ๐+1 , three candidate
2
stencils,
24
๐ 0 = {๐ป๐โ3 , ๐ป๐โ1 , ๐ป๐+1 } , ๐ 1 = {๐ป๐โ1 , ๐ป๐+1 , ๐ป๐+3 }, and ๐ 2 = {๐ป๐+1 , ๐ป๐+3 , ๐ป๐+5 },
2
2
2
2
2
2
2
2
(3.27)
2
are used as shown in figure 3.4.
2
S0
S
0
1
S
Figure 3.4. The stencils for WCS.
Similar to the WENO scheme, three candidates from the three stencils can be constructed
as follows:
1
๐ 0:
1
5
2๐ปโฒ๐โ1 + ๐ปโฒ๐+1 = โ (โ 2 ๐ป๐โ3 โ 2๐ป๐โ1 + 2 ๐ป๐+1 )
2
1
๐1:
4
2
2
1
2
3
2
2
2
1
5
2
2
2
(3.28)
(4th order)
(3.29)
(3rd order)
(3.30)
2
๐ปโฒ๐+1 + 2๐ปโฒ๐+3 = โ (2 ๐ป๐+5 โ 2๐ป๐+3 โ 2 ๐ป๐+1 )
2
(3rd order)
2
๐ปโฒ๐โ1 + ๐ปโฒ๐+1 + 4 ๐ปโฒ๐+3 = 4โ (๐ป๐โ3 โ ๐ป๐โ1 )
1
๐ 2:
2
2
If a weighted average of the three stencils is considered with different constant weights,
๐ = ๐ 0 ๐ 0 + ๐1 ๐ 1 +๐ 2 ๐ 2
we have
๐0 =
such that
1
18
8
1
9
18
, ๐ 1 = , ๐๐๐ ๐ 2 =
For consistency of the scheme, we must satisfy the equation โ2๐=0 ๐ i = 1.
The scheme resulting from the weighted average of the three candidates is
1
3
1
1
23
7
1
1
๐ปโฒ๐โ1 + ๐ปโฒ๐+1 + 3 ๐ปโฒ๐+3 โ โ (36 ๐ป๐โ3 โ 9 ๐ป๐โ1 โ 9 ๐ป๐+3 + 36 ๐ป๐+5 )
2
2
2
2
2
2
(3.31)
2
By using the Taylor expansion, it can be verified that the scheme is the standard 6th order
compact scheme as follows:
25
1
1
1
1
7
7
1
๐ปโฒ๐โ1 + ๐ปโฒ๐ + ๐ปโฒ๐+1 โ (โ ๐ป๐โ2 โ ๐ป๐โ1 + ๐ป๐+1 + ๐ป๐+2 )
3
3
โ
36
9
9
36
1
(7)
= โ 1260 โ6 ๐น๐
1
(9)
โ 15120 โ8 ๐น๐
+โฏ
(3.32)
3.1.5. Modified Upwinding Compact Scheme (MUCS)
The main idea of MUCS is using the WENO scheme to improve a 7th order upwinding
compact scheme by using a new shock detector to find the shock location and using a
new control function to mix the upwinding compact scheme with the WENO scheme near
the shock. The reason for using the upwind technology is to introduce some numerical
dissipation because the standard compact scheme has no dissipation. To obtain the 7th
order upwinding compact scheme (UCS), three 3rd order approximations of the linear
compact combination of numerical fluxes at ๐นฬ๐โ3 , ๐นฬ๐โ1 , ๐นฬ๐+1 , ๐นฬ๐+3 , ๐นฬ๐+5 are obtained
2
2
2
2
2
from the three candidate stencils
๐ 0 = {๐น๐โ2 , ๐น๐โ1 , ๐น๐ }, ๐ 1 = {๐น๐โ1 , ๐น๐ , ๐น๐+1 }, ๐๐๐ ๐ 2 = {๐น๐ , ๐น๐+1 , ๐น๐+2 }
The 7th order upwinding compact scheme (UCS) is
1
1
1 1
1
11
1
31
1
๐ปโฒ 3 + ๐ปโฒ 1 + ๐ปโฒ 1 = โ (240 ๐ป๐โ7 โ 12 ๐ป๐โ5 โ 12 ๐ป๐โ3 + 3 ๐ป๐โ1 + 48 ๐ป๐+1 + 60 ๐ป๐+3 ) (3.33)
๐โ
๐+
2 ๐โ2
4
2
2
2
2
2
2
2
2
MUCS makes the UCS able to capture the shock and keep a high order accuracy with
high resolution in the smooth areas. The shock detector is a switch function that gives
one for shocks and zero for others. The new control function ๐บ is defined as
๐บ โ UCS + (1 โ ๐บ) โ WENO
26
3.1.6. Modified Weighted Compact Scheme (MWCS)
In MWCS, the WENO scheme and WCS are combined by a mixing function, which aims
to linearly combine the two schemes in order to gain a numerical stability, a sharp shockcapturing, and a good resolution for small length scales. The final formulation of the
numerical flux of MWCS is
(๐๐๐ถ๐)
(๐๐ถ๐)
(๐๐ธ๐๐)
๐นฬ 1
= (1 โ โ๐ ) ๐นฬ 1 +โ๐ ๐นฬ 1
๐โ
๐โ
2
๐โ
2
where
โ๐ = (0.5)*(1-
2
(3.34)
(๐ผ๐ 0 โ ๐ผ๐ 1 )2 + (๐ผ๐ 1 โ ๐ผ๐ 2 )2 + (๐ผ๐ 2 โ ๐ผ๐ 0 )2
2 โ ((๐ผ๐ 0 )2 + (๐ผ๐ 1 )2 + (๐ผ๐ 2 )2 )
and ๐ผ๐ ๐ (i = 0,1,2) are the smoothness indicators (3.23) obtained from the WENO
scheme. Also, for consistency of the scheme, we must satisfy 0 โคโ๐ โค 1
3.2 Weighted Upwinding Compact Scheme (WUCS)
3.2.1. Basic formulation of WUCS
For a given point j, three candidate stencils containing these points are defined as follows:
๐ 0 = {๐๐โ2 , ๐๐โ1 , ๐๐ }
๐ 1 = {๐๐โ1 , ๐๐ , ๐๐+1 }
๐ 2 = {๐๐ , ๐๐+1 , ๐๐+2 }
Below are the schemes for the three candidate stencils, which are calculated by repeating
the steps applied to (3.11) at each stencil.
1
1
19
10
๐ 0 : ๐ฬ๐โ3 + 2๐ฬ๐โ1 + 3 ๐ฬ๐+1 = 9 ๐๐โ2 + 9 ๐๐โ1 + 9 ๐๐
2
2
2
27
(3.35)
1
1
19
10
๐ 1 : โ ๐ฬ๐โ1 โ 2๐ฬ๐+1 โ 3 ๐ฬ๐+3 = โ 9 ๐๐โ1 โ 9 ๐๐ โ 9 ๐๐+1
(3.36)
10
19
1
๐ 2 : โ๐ฬ๐โ1 โ 6๐ฬ๐+1 โ 3 ๐ฬ๐+3 = โ 3 ๐๐ โ 3 ๐๐+1 โ 3 ๐๐+2
(3.37)
2
2
2
2
2
2
All three schemes above are a 5th order. According to the idea of the WENO scheme, a
new 7th order scheme is obtained by a linear combination of all stencils with a specific
3
33
7
weight assigned to each one of them. Consider ๐ 0 = 13 , ๐ 1 = 52 , and ๐ 2 = 52 are the
weights assigned to the stencils ๐ 0 , ๐ 1 , ๐๐๐ ๐ 2 respectively. In addition, for consistency
of the scheme, the sum of these weights should be equal to one. Hence, from the
๐ = ๐ 0 ๐ 0 + ๐ 1 ๐ 1 +๐ 2 ๐ 2 ,
combination
the final scheme for the positive primitive function ๐ป + can be written as follows:
3
๐ฬ 3
13 ๐โ2
4
8
1
5
239
81
7
โ 13 ๐ฬ๐โ1 โ 2๐ฬ๐+1 โ 13 ๐ฬ๐+3 = 39 ๐๐โ2 + 12 ๐๐โ1 โ 156 ๐๐ โ 52 ๐๐+1 โ 156 ๐๐+2
2
2
(3.38)
2
For the negative primitive function ๐ป โ , the formula is similar. It can be verified that the
scheme above has a 7th order by using the Taylor expansion for each term. In addition,
the numerical results in chapter 4 show the scheme has 7th order with high resolution.
3.2.2 Boundary points schemes
Special 7th order schemes are constructed for boundary the points as follows:
Point 0,
๐ฬ๐โ1 =
2
363
617
853
2341
667
43
1
๐๐ โ
๐๐+1 +
๐๐+2 โ
๐๐+3 +
๐๐+4 โ ๐๐+5 + ๐๐+6
140
140
140
420
210
42
7
28
Point 1,
1
223
197
153
241
37
1
๐ฬ๐โ1 = ๐๐โ1 +
๐๐ โ
๐๐+1 +
๐๐+2 โ
๐๐+3 +
๐๐+4 โ
๐
7
140
140
140
420
210
42 ๐+5
2
Point 2,
๐ฬ๐โ1 = โ
2
1
13
153
241
109
31
1
๐๐โ2 + ๐๐โ1 +
๐๐ โ
๐๐+1 +
๐๐+2 โ
๐๐+3 +
๐
42
42
140
420
140
420
105 ๐+4
Point N-1,
๐ฬ๐+1 = โ
2
1
37
241
153
197
223
1
๐๐โ5 +
๐๐โ4 โ
๐๐โ3 +
๐๐โ2 โ
๐๐โ1 +
๐๐ + ๐๐+1
42
210
420
140
140
140
7
Point N,
๐ฬ๐+1 =
2
1
43
667
2341
853
617
363
๐๐โ6 โ ๐๐โ5 +
๐๐โ4 โ
๐๐โ3 +
๐๐โ2 โ
๐๐โ1 +
๐
7
42
210
420
140
140
140 ๐
3.3. Dispersion and Dissipation Analysis
The dispersion and dissipation errors are efficiently quantified using the Fourier
analysis by R. Vichnevetsky (1982) and J. Anderson (1995). Hence, the resolution and
diffusion properties of the WUCS scheme are provided by the Fourier analysis and
compared with the WENO scheme and WCS. Since the Fourier analysis requires
periodicity, the dependent variables are considered to be periodic over the domain [0 , L]
๐ฟ
of independent variables. ๐1 = ๐๐+1 ๐๐๐ โ = ๐ . The dependent variables can be written
in terms of the Fourier coefficients as follows:
๐
๐(๐ฅ) = โ 2
๐
๐=โ
2
๐ฬ๐ ๐
2๐๐๐๐ฅ
๐ฟ
(3.39)
Where ๐ = โโ1 and ๐ฅ โ [0, ๐ฟ]. The Fourier coefficients satisfy that ๐ฬ0 = ๐ฬ
ฬ0 and
29
๐
๐ฬ๐ = ๐ฬโ๐ for 1 โค k โค 2 because the dependent variables are real values. For programing
convenience, a scaled wave number ๐ค =
2๐๐โ
๐ฟ
=
2๐๐
๐
๐ฅ
and a scaled coordinate ๐ = โ are
introduced. Hence, (3.39) becomes
๐
๐(๐ฅ) = ๐(๐ โ) = โ 2
๐=โ
๐
2
๐ฬ๐ ๐ ๐๐ค๐
(3.40)
The domain of the scaled wave number w is [0, ๐]. The first derivative of (3.40) can be
computed with respect of ๐ as follows:
โ๐โฒ(๐ โ) = โ
๐
2
๐=โ
๐
2
๐๐ค๐ฬ๐ ๐ ๐๐ค๐
(3.41)
When comparing the Fourier coefficients of the derivative obtained from the differencing
scheme(๐ฬ โฒ ๐ )๐๐ with the exact Fourier coefficients, ๐ฬ โฒ ๐ , the differencing errors can be
obtained. In general, a finite difference scheme corresponds to a function of w, ๐คโฒ(๐ค),
which is called the effective wave number. The straight line ๐ค โฒ (๐ค) = ๐ค represents the
exact differentiation. The real part of the effective wave number (๐ค โฒ ) quantifies the
dissipation error while the dispersion error, which represents the resolution of the scheme,
can be quantified by the imaginary part of ๐ค โฒ . The dissipation errors constitute the
amplification introduced by the scheme while the dispersion errors represent the waves
for different wave numbers traveling at different velocities. The dispersion and
dissipation of the WENO scheme, WCS, and WUCS are discussed in the following
subsections at each stencil (for non-smooth areas) and at the combinations of all stencils
(for smooth areas).
30
3.3.1 Dispersion and dissipation analysis for the left stencils (๐ 0 )
One problem with the WCS scheme (Jiang et al., 2001) is it has a negative dissipation for
the left candidate, and this problem is treated when constructing the WUCS scheme. The
scheme for the left stencil of WUCS is given in (3.35) as follows:
๐ฬ๐โ3 + 2๐ฬ๐โ1 +
2
2
1
1
19
10
๐ฬ๐+1 = ๐๐โ2 + ๐๐โ1 +
๐
3
9
9
9 ๐
2
First, the above scheme can be rewritten in terms of H when substituting (3.7) and (3.8)
in (3.35) as follows:
โ(๐ปโฒ
3
๐โ
2
+ 2๐ปโฒ
1
๐โ
2
+
1
1
19
10
๐ปโฒ 1 ) = (๐ป 3 โ ๐ป 5 ) + (๐ป 1 โ ๐ป 3 ) + (๐ป 1 โ ๐ป 1 )
๐โ
๐โ
๐+
๐โ
๐โ
3 ๐+2
9 ๐โ2
9
9
2
2
2
2
2
1
For simplification, letting j = 0 and shifting the scheme by โ 2 gives
1
1
โ(๐ปโฒโ2 + 2๐ปโฒโ1 + 3 ๐ปโฒ0 ) = 9 (๐ปโ2 โ ๐ปโ3 ) +
19
(๐ปโ1
9
โ ๐ปโ2 ) +
10
(๐ป0
9
โ ๐ป1 )
(3.42)
From (3.40) and (3.41), we have
๐
๐ป๐ = โ 2
ฬ ๐ ๐๐๐ค๐
๐ป
(3.43)
ฬ ๐ ๐๐๐ค๐
๐๐ค๐ป
(3.44)
๐
๐=โ 2
๐
๐ปโฒ๐ = โ 2
๐
๐=โ 2
Substituting (3.43) and (3.44) in (3.42) results in
๐
2
๐
2
๐
๐=โ
2
๐
๐=โ
2
๐๐ค
1
19
10
ฬ๐ (๐๐ค ๐ โ2๐๐ค + 2๐๐ค ๐ โ๐๐ค +
ฬ๐ ( (๐ โ2๐๐ค โ ๐ โ3๐๐ค ) + (๐ โ๐๐ค โ ๐ โ2๐๐ค ) + (1 โ ๐ โ๐๐ค ))
h โ ๐ป
)= โ ๐ป
3
9
9
9
๐
2
ฬ๐ [(๐๐ค ๐ โ2๐๐ค + 2๐๐ค ๐ โ๐๐ค +
h โ ๐ป
๐
๐=โ
2
๐๐ค
1
19
10
) โ ( (๐ โ2๐๐ค โ ๐ โ3๐๐ค ) + (๐ โ๐๐ค โ ๐ โ2๐๐ค ) + (1 โ ๐ โ๐๐ค ))] = 0
3
9
9
9
31
๐
2
[(๐๐ค ๐ โ2๐๐ค + 2๐๐ค ๐ โ๐๐ค +
๐๐ค
1
19
10
ฬ๐ = 0
) โ ( (๐ โ2๐๐ค โ ๐ โ3๐๐ค ) + (๐ โ๐๐ค โ ๐ โ2๐๐ค ) +
(1 โ ๐ โ๐๐ค ))] h โ ๐ป
3
9
9
9
๐=โ
[(๐๐ค ๐ โ2๐๐ค + 2๐๐ค ๐ โ๐๐ค +
๐
2
๐๐ค
1
19 โ๐๐ค
10
) โ ( (๐ โ2๐๐ค โ ๐ โ3๐๐ค ) +
(๐
โ ๐ โ2๐๐ค ) + (1 โ ๐ โ๐๐ค ))] = 0
3
9
9
9
(๐๐ค ๐ โ2๐๐ค + 2๐๐ค ๐ โ๐๐ค +
๐๐ค
1
19 โ๐๐ค
10
) = (๐ โ2๐๐ค โ ๐ โ3๐๐ค ) +
(๐
โ ๐ โ2๐๐ค ) +
(1 โ ๐ โ๐๐ค )
3
9
9
9
Using Eulerโs formula, ๐ ๐๐ค = ๐ถ๐๐ [๐ค] + ๐ ๐๐๐[๐ค], results in
2โ๐ค๐๐๐[๐ค] + โ๐ค๐๐๐[2๐ค] + ๐(
=
โ๐ค
+ 2โ๐ค๐ถ๐๐ [๐ค] + โ๐ค๐ถ๐๐ [2๐ค])
3
10
1
1
+ ๐ถ๐๐ [๐ค] โ 2๐ถ๐๐ [2๐ค] โ ๐ถ๐๐ [3๐ค] + ๐(โ๐๐๐[๐ค] + 2๐๐๐[2๐ค] + ๐๐๐[3๐ค])
9
9
9
โ๐ค ๐ ๐๐(2๐ค) + 2โ๐ค ๐ ๐๐(๐ค) + ๐ (โ๐ค ๐๐๐ (2๐ค) + 2โ๐ค ๐ถ๐๐ [๐ค] +
โ๐ค
)
3
1
10
1
= โ ๐๐๐ (3๐ค) โ 2 ๐๐๐ (2๐ค) +
+ ๐ ( ๐ ๐๐(3๐ค) + 2 ๐ ๐๐(2๐ค) โ ๐ ๐๐(๐ค))
9
9
9
๐ค=
โ10๐ โ 9๐๐ถ๐๐ [๐ค] + 18๐๐ถ๐๐ [2๐ค] + ๐๐ถ๐๐ [3๐ค] โ 9๐๐๐[๐ค] + 18๐๐๐[2๐ค] + ๐๐๐[3๐ค]
3โ(1 + 6๐ถ๐๐ [๐ค] + 3๐ถ๐๐ [2๐ค] โ 6๐๐๐๐[๐ค] โ 3๐๐๐๐[2๐ค])
๐ค=
โ9i+8i๐ถ๐๐ [๐ค]+i๐ถ๐๐ [2๐ค]+28๐๐๐[๐ค]+๐๐๐[2๐ค]
6โ(3+2๐ถ๐๐ [๐ค]โi๐๐๐[๐ค])
Letting โ = 1 gives
๐ค=
โ9๐+8๐๐ถ๐๐ [๐ค]+๐๐ถ๐๐ [2๐ค]+28๐๐๐[๐ค]+๐๐๐[2๐ค]
6(3+2๐ถ๐๐ [๐ค]โ๐๐๐๐[๐ค])
(3.45)
w in (3.45) represents the wave number for the left stencil of WUCS, and it is denoted
by ๐ค(๐๐๐ถ๐) .
Hence,
๐ค(๐๐๐ถ๐) =
โ9๐+8๐๐ถ๐๐ [๐ค]+๐๐ถ๐๐ [2๐ค]+28๐๐๐[๐ค]+๐๐๐[2๐ค]
6(3+2๐ถ๐๐ [๐ค]โ๐๐๐๐[๐ค])
32
Similarly, the wave numbers for the left stencils of WCS and the WENO scheme can be
computed as follows:
๐ค(๐๐ถ๐) =
2๐โ2๐๐ถ๐๐ [๐ค]+3๐๐๐[๐ค]
2+๐ถ๐๐ [๐ค]+๐ ๐๐๐[๐ค]
and
๐(๐๐ธ๐๐) =
๐(โ11+18๐ถ๐๐ [๐ค]โ9๐ถ๐๐ [2๐ค]+2๐ถ๐๐ [3๐ค])+18๐๐๐[๐ค]โ9๐๐๐[2๐ค]+2๐๐๐[3๐ค]
6
Now, the dispersion and dissipation errors can be found as follows:
Effective Wave Number (๐ค โฒ ) = Dissipation + ๐* Dispersion
Effective Wave Number (๐คโฒ) = ๐๐ค
let
so
๐ค = ๐ + ๐๐
๐ค โฒ = ๐(๐ + ๐๐) = ๐๐ โ ๐ = โ๐ + ๐๐
The Dispersion = ๐ = Re (w)
(3.46)
The Dissipation = โb = โ Im (w)
(3.47)
The dispersion errors of WUCS, WCS, and the WENO scheme are
Re (๐ค(๐๐๐ถ๐) ) = Re(
Re(๐ค(WCS) ) = Re(
=
6(3+2๐ถ๐๐ [๐ค]โi๐๐๐[๐ค])
),
2iโ2iCos[๐ค]+3Sin[๐ค]
2+๐ถ๐๐ [๐ค]+๐ ๐๐๐[๐ค]
(8+Cos[๐ค])Sin[๐ค]
๐
๐(๐(๐๐ธ๐๐) ) = ๐
๐(
=
โ9i+8i๐ถ๐๐ [๐ค]+i๐ถ๐๐ [2๐ค]+28๐๐๐[๐ค]+๐๐๐[2๐ค]
5+4๐ถ๐๐ [๐ค]
)
, and
i(โ11+18๐ถ๐๐ [๐ค]โ9๐ถ๐๐ [2๐ค]+2๐ถ๐๐ [3๐ค])+18๐๐๐[๐ค]โ9๐๐๐[2๐ค]+2๐๐๐[3๐ค]
6
18๐๐๐[๐ค]โ9๐๐๐[2๐ค]+2๐๐๐[3๐ค]
6
33
)
3
1
= 3๐๐๐[๐ค] โ 2 ๐๐๐[2๐ค] + 3 ๐๐๐[3๐ค]
As shown in Figure 3.5, the WENO scheme has the biggest dispersion errors among the
three schemes, so it has the lowest resolution. Both WUCS and WCS have high resolution
with close dispersion errors.
Figure 3.5. The dispersion in the left stencils of
WUCS, WCS, and the WENO scheme.
The dissipation errors are
โ9i+8i๐ถ๐๐ [๐ค]+i๐ถ๐๐ [2๐ค]+28๐๐๐[๐ค]+๐๐๐[2๐ค]
),
6(3+2๐ถ๐๐ [๐ค]โi๐๐๐[๐ค])
โ Im (๐ค(๐๐๐ถ๐) ) = โIm (
โIm(๐ค(WCS) ) = โIm (
2๐โ2๐Cos[๐ค]+3Sin[๐ค]
)
2+๐ถ๐๐ [๐ค]+๐ ๐๐๐[๐ค]
๐ค 4
2
4Sin[ ]
= โ 5+4๐ถ๐๐ [๐ค] , and
๐(โ11+18๐ถ๐๐ [๐ค]โ9๐ถ๐๐ [2๐ค]+2๐ถ๐๐ [3๐ค])+18๐๐๐[๐ค]โ9๐๐๐[2๐ค]+2๐๐๐[3๐ค]
)
6
โ Im (๐(๐๐ธ๐๐) ) = โ Im(
=โ(
=
11
6
(โ11+18๐ถ๐๐ [๐ค]โ9๐ถ๐๐ [2๐ค]+2๐ถ๐๐ [3๐ค])
)
6
3
1
2
3
โ 3๐ถ๐๐ [๐ค] + ๐ถ๐๐ [2๐ค] โ ๐ถ๐๐ [3๐ค]
34
Figure 3.6 illustrates that WUCS has a positive dissipation while WCS has a negative
dissipation, and the WENO scheme fluctuates over the wave number range. Also, the
dissipation errors in WUCS are the lowest compared to the WENO scheme and WCS.
Figure 3.6. Dissipation in the left stencils of
WUCS, WCS, and the WENO scheme.
3.3.2 Dispersion and dissipation analysis for the center stencils (๐ 1 )
The scheme for the center stencil of WUCS is given in (3.36) as follows:
โ๐ฬ๐โ1 โ 2๐ฬ๐+1 โ
2
2
1
1
19
10
๐ฬ๐+3 = โ ๐๐โ1 โ ๐๐ โ ๐๐+1
3
9
9
9
2
Applying the same procedure and analysis from section 3.3.1 results in
1
19
10
1
โ(โ2๐๐ค โ ๐๐ โ๐๐ค ๐ค โ ๐๐ ๐๐ค ๐ค) = โ (1 โ ๐ โ๐๐ค ) โ
(โ1 + ๐ ๐๐ค ) + (โ๐ โ๐๐ค + ๐ โ2๐๐ค )
3
9
9
9
By letting โ = 1 and using Eulerโs formula, we arrive at
4
2
8
1
28
1
๐(โ2๐ค โ ๐ค๐ถ๐๐ [๐ค]) โ โ๐ค๐๐๐[๐ค] = โ1 + ๐ถ๐๐ [๐ค] + ๐ถ๐๐ [2๐ค] + ๐(โ ๐๐๐[๐ค] โ ๐๐๐[2๐ค])๐ค
3
3
9
9
9
9
35
๐ค=
โ9๐ + 8๐๐ถ๐๐ [๐ค] + ๐๐ถ๐๐ [2๐ค] + 28๐๐๐[๐ค] + ๐๐๐[2๐ค]
6(3 + 2๐ถ๐๐ [๐ค] โ ๐๐๐๐[๐ค])
Hence,
๐ค(๐๐๐ถ๐) =
โ9i + 8i๐ถ๐๐ [๐ค] + i๐ถ๐๐ [2๐ค] + 28๐๐๐[๐ค] + ๐๐๐[2๐ค]
6(3 + 2๐ถ๐๐ [๐ค] โ i๐๐๐[๐ค])
Similarly, the wave numbers for the center stencils of WCS and the WENO scheme are
๐ค(WCS) =
๐(๐๐ธ๐๐) =
3Sin[๐ค]
2+Cos[๐ค]
and
i(โ3+4Cos[๐ค]โCos[2๐ค])+8Sin[๐ค]โSin[2๐ค]
6
The dispersion errors of WUCS, WCS, and WENO are
โ9i+8i๐ถ๐๐ [๐ค]+i๐ถ๐๐ [2๐ค]+28๐๐๐[๐ค]+๐๐๐[2๐ค]
Re (๐ค(๐๐๐ถ๐) ) = Re (
=
189Sin[๐ค]+54Sin[2๐ค]+Sin[3๐ค]
6(23+24Cos[๐ค]+3Cos[2๐ค])
Re(๐ค(WCS) ) = Re(
๐
๐(๐(๐๐ธ๐๐) ) = ๐
๐(
=
4
)
6(3+2๐ถ๐๐ [๐ค]โi๐๐๐[๐ค])
3Sin[๐ค]
2+Cos[๐ค]
)=
3Sin[๐ค]
2+Cos[๐ค]
, and
๐(โ3+4Cos[๐ค]โCos[2๐ค])+8Sin[๐ค]โSin[2๐ค]
6
)
8Sin[๐ค]โSin[2๐ค]
6
1
= 3 Sin[๐ค] โ 6 Sin[2๐ค]
As illustrated in Figure 3.7, the resolution of WCS is better than the resolution of the
WENO scheme, and WUCS is the best among all of them because it is of the lowest
dispersion errors.
36
Figure 3.7. The dispersion in the center stencils of
WUCS, WCS, and the WENO scheme.
The dissipation errors are
189Sin[๐ค]+54Sin[2๐ค]+Sin[3๐ค]
)
6(23+24Cos[๐ค]+3Cos[2๐ค])
โ Im (๐ค(๐๐๐ถ๐) ) = โ Im (
๐ค
16Sin[ ]6
2
= 69+72Cos[๐ค]+9Cos[2๐ค]
,
3Sin[๐ค]
โIm(๐ค(WCS) ) = โIm (2+Cos[๐ค]) = 0 , and
๐(โ3 + 4Cos[๐ค] โ Cos[2๐ค]) + 8Sin[๐ค] โ Sin[2๐ค]
โ Im (๐(๐๐ธ๐๐) ) = โ Im(
=โ(
1
)
6
(โ3+4Cos[๐ค]โCos[2๐ค])
2
6
)
1
= 2 โ 3 Cos[๐ค] + 6 Cos[2๐ค]
Figure 3.8 represents that both the WENO scheme and WUCS have a positive dissipation
while WCS has no dissipation. Also, the dissipation errors in WUCS are much fewer than
the dissipation errors in the WENO scheme.
37
Figure 3.8. The dissipation in the center stencils of
WUCS, WCS, and the WENO scheme.
3.3.3 Dispersion and dissipation analysis for the right stencils (๐ 2 )
The scheme for the right stencil of WUCS is given in (3.37) as follows:
โ๐ฬ๐โ1 โ 6๐ฬ๐+1 โ 3 ๐ฬ๐+3 = โ
2
2
2
10
19
1
๐๐ โ ๐๐+1 โ ๐๐+2
3
3
3
Applying the process in section 3.3.1 results in
โ(โ6๐w โ ๐๐ โ๐๐ค w โ 3๐๐ ๐๐ค w) == โ
10
19
1
(1 โ ๐ โ๐๐ค ) โ
(โ1 + ๐ ๐๐ค ) + (๐ ๐๐ค โ ๐ 2๐๐ค )
3
3
3
8
1
28
1
๐(โ6โw โ 4โwCos[๐ค]) + 2โwSin[๐ค] == 3 โ Cos[๐ค] โ Cos[2๐ค] + ๐(โ Sin[๐ค] โ Sin[2๐ค])
3
3
3
3
Letting โ = 1 and using Eulerโs formula provides
๐ค=
๐ค=
9๐โ8๐Cos[๐ค]โ๐Cos[2๐ค]+28Sin[๐ค]+Sin[2๐ค]
6(3+2Cos[๐ค]+๐Sin[๐ค])
9๐โ8๐Cos[๐ค]โ๐Cos[2๐ค]+28Sin[๐ค]+Sin[2๐ค]
18+12Cos[๐ค]+6๐Sin[๐ค]
38
Hence,
๐ค(๐๐๐ถ๐) =
9๐โ8๐Cos[๐ค]โ๐Cos[2๐ค]+28Sin[๐ค]+Sin[2๐ค]
18+12Cos[๐ค]+6๐Sin[๐ค]
Similarly, the wave numbers for the right stencils of the WENO scheme and WCS are
๐ค(๐๐ถ๐) =
5๐โ4๐๐ถ๐๐ [๐ค]โ๐๐ถ๐๐ [2๐ค]+4๐๐๐[๐ค]+๐๐๐[2๐ค]
2(1+2๐ถ๐๐ [๐ค]+2๐๐๐๐[๐ค])
๐(๐๐ธ๐๐) =
and
๐(3โ4๐ถ๐๐ [๐ค]+๐ถ๐๐ [2๐ค])+8๐๐๐[๐ค]โ๐๐๐[2๐ค]
6
The dispersion errors of WUCS, WCS, and the WENO scheme are
9๐โ8๐Cos[๐ค]โ๐Cos[2๐ค]+28Sin[๐ค]+Sin[2๐ค]
Re (๐ค(๐๐๐ถ๐) ) = Re (
Re(๐ค(WCS) ) = Re(
=
5๐โ4๐Cos[๐ค]โ๐Cos[2๐ค]+4Sin[๐ค]+Sin[2๐ค]
2(1+2Cos[๐ค]+2๐Sin[๐ค])
(8+Cos[๐ค])Sin[๐ค]
5+4๐ถ๐๐ [๐ค]
๐
๐(๐(๐๐ธ๐๐) ) = ๐
๐(
=
4
18+12Cos[๐ค]+6๐Sin[๐ค]
),
)
, and
๐(3โ4Cos[๐ค]+Cos[2๐ค])+8Sin[๐ค]โSin[2๐ค]
6
)
8Sin[๐ค]โSin[2๐ค]
6
1
= 3 Sin[๐ค] โ 6 Sin[2๐ค]
It can be clearly seen from Figure 3.9 that both WUCS and WCS have high resolution.
Also, the WENO scheme has the lowest resolution among the three schemes because it
has the biggest dispersion errors.
39
Figure 3.9. The dispersion in the right stencils of
WUCS, WCS, and the WENO scheme.
The dissipation errors are
9๐โ8๐Cos[๐ค]โ๐Cos[2๐ค]+28Sin[๐ค]+Sin[2๐ค]
),
18+12Cos[๐ค]+6๐Sin[๐ค]
โ Im (๐ค(๐๐๐ถ๐) ) = โ Im (
โIm(๐ค(WCS) ) = โIm (
5๐โ4๐Cos[๐ค]โ๐Cos[2๐ค]+4Sin[๐ค]+Sin[2๐ค]
2(1+2Cos[๐ค]+2๐Sin[๐ค])
)
๐ค 4
2
4Sin[ ]
= 5+4๐ถ๐๐ [๐ค] , and
โ Im (๐(๐๐ธ๐๐) ) = โ Im(
=โ(
๐(3โ4Cos[๐ค]+Cos[2๐ค])+8Sin[๐ค]โSin[2๐ค]
6
(3โ4Cos[๐ค]+Cos[2๐ค])
1
6
2
)
)
1
= โ 2 + 3 Cos[๐ค] โ 6 Cos[2๐ค]
Figure 3.10 illustrates that both the WENO scheme and WUCS have a negative
dissipation while WCS has a positive dissipation. Also, the dissipation errors in WUCS
are the lowest compared to the WENO scheme and WCS.
40
Figure 3.10. The dissipation in the right stencils of
WUCS, WCS, and the WENO scheme.
3.3.4 Dispersion and dissipation analysis for the overall schemes
For smooth regions, the combination of all schemes from all stencils is used to get a high
order scheme. The 7th order WUCS scheme is given in (3.38) as follows:
3
4
8
๐ฬ๐โ3 โ ๐ฬ๐โ1 โ 2๐ฬ๐+1 โ
๐ฬ 3
13
13
13 ๐+2
2
2
2
=
1
5
239
81
7
๐๐โ2 +
๐๐โ1 โ
๐๐ โ ๐๐+1 โ
๐
39
12
156
52
156 ๐+2
Now, repeating the process from section 3.3.1 gives
๐ค=
2๐ + 34๐๐ถ๐๐ [๐ค] โ 34๐๐ถ๐๐ [2๐ค] โ 2๐๐ถ๐๐ [3๐ค] + 270๐๐๐[๐ค] โ 27๐๐๐[2๐ค] โ 2๐๐๐[3๐ค]
6(26 + 12๐ถ๐๐ [๐ค] โ 3๐ถ๐๐ [2๐ค] + 4๐๐๐๐[๐ค] + 3๐๐๐๐[2๐ค])
Hence,
๐ค(๐๐๐ถ๐) =
2๐ + 34๐๐ถ๐๐ [๐ค] โ 34๐๐ถ๐๐ [2๐ค] โ 2๐๐ถ๐๐ [3๐ค] + 270๐๐๐[๐ค] โ 27๐๐๐[2๐ค] โ 2๐๐๐[3๐ค]
6(26 + 12๐ถ๐๐ [๐ค] โ 3๐ถ๐๐ [2๐ค] + 4๐๐๐๐[๐ค] + 3๐๐๐๐[2๐ค])
Similarly, the wave numbers for the WENO scheme and WCS are
41
(14+Cos[๐ค])Sin[๐ค]
๐ค(WCS) =
๐(๐๐ธ๐๐) =
1
30
9+6Cos[๐ค]
and
(๐(โ10 + 15Cos[๐ค] โ 6Cos[2๐ค] + Cos[3๐ค]) + 45Sin[๐ค] โ 9Sin[2๐ค] + Sin[3๐ค])
The dispersion errors of WUCS, WCS, and the WENO scheme are
2๐+34๐๐ถ๐๐ [๐ค]โ34๐๐ถ๐๐ [2๐ค]โ2๐๐ถ๐๐ [3๐ค]+270๐๐๐[๐ค]โ27๐๐๐[2๐ค]โ2๐๐๐[3๐ค]
Re (๐ค(๐๐๐ถ๐) ) = Re (
Re(๐ค(WCS) ) = Re(
=
๐
๐(๐(๐๐ธ๐๐) ) = ๐
๐(
6(26+12๐ถ๐๐ [๐ค]โ3๐ถ๐๐ [2๐ค]+4๐๐๐๐[๐ค]+3๐๐๐๐[2๐ค])
(14+Cos[๐ค])Sin[๐ค]
9+6Cos[๐ค]
),
)
(14+Cos[๐ค])Sin[๐ค]
9+6Cos[๐ค]
, and
1
(๐(โ10 + 15Cos[๐ค] โ 6Cos[2๐ค] + Cos[3๐ค]) + 45Sin[๐ค] โ 9Sin[2๐ค] + Sin[3๐ค]))
30
1
= 30 (45Sin[๐ค] โ 9Sin[2๐ค] + Sin[3๐ค])
3
3
1
= 2 Sin[๐ค] โ 10 Sin[2๐ค] + 30 Sin[3๐ค]
Figure 3.11 shows that WUCS has small dispersion errors and achieves the highest
resolution compared to WCS and the WENO scheme.
Figure 3.11. The dispersion in WUCS, WCS,
and the WENO scheme.
42
The dissipation errors are
2๐+34๐๐ถ๐๐ [๐ค]โ34๐๐ถ๐๐ [2๐ค]โ2๐๐ถ๐๐ [3๐ค]+270๐๐๐[๐ค]โ27๐๐๐[2๐ค]โ2๐๐๐[3๐ค]
),
6(26+12๐ถ๐๐ [๐ค]โ3๐ถ๐๐ [2๐ค]+4๐๐๐๐[๐ค]+3๐๐๐๐[2๐ค])
โ Im (๐ค(๐๐๐ถ๐) ) = โ Im (
(14+๐ถ๐๐ [๐ค])๐๐๐[๐ค]
โ๐ผ๐(๐ค(๐๐ถ๐) ) = โ๐ผ๐ (
9+6๐ถ๐๐ [๐ค]
) = 0, and
1
โ Im (๐(๐๐ธ๐๐) ) = โ Im( (๐(โ10 + 15Cos[๐ค] โ 6Cos[2๐ค] + Cos[3๐ค]) + 45Sin[๐ค] โ 9Sin[2๐ค] + Sin[3๐ค]))
30
1
= โ (30 (โ10 + 15Cos[๐ค] โ 6Cos[2๐ค] + Cos[3๐ค]))
1
1
1
1
= 3 โ 2 Cos[๐ค] + 5 Cos[2๐ค] โ 30 Cos[3๐ค]
Similar to the analysis of the center stencils, Figure 3.12 demonstrates that WCS has no
dissipation errors while both the WENO scheme and WUCS are positively dissipative.
Also, the dissipation errors in the WENO scheme are the highest among all the three
schemes.
Figure 3.12. The dissipation in WUCS, WCS,
and the WENO scheme.
43
3.4 Decoupling the System of WUCS
WCS has a global dependency problem because it uses all grid points including
the downstream points to get the derivative near shocks. WUCS applies the technique of
decoupling the system in shock areas to change the global dependence into an upwinding
dependence. To explain the idea of this section, systems or matrices from WCS and
WUCS are illustrated. From (3.31), the final scheme of WCS is
1
3
1
1
23
7
1
1
๐ปโฒ๐โ1 + ๐ปโฒ๐+1 + 3 ๐ปโฒ๐+3 โ โ (36 ๐ป๐โ3 โ 9 ๐ป๐โ1 โ 9 ๐ป๐+3 + 36 ๐ป๐+5 )
2
2
2
2
2
2
2
Hence, (3.31) can be written in a matrix form as follows:
๐ด๐ป โฒ =
๐ป = [๐ป12
where
๐ป โฒ = [๐ป
โฒ1
2
๐ปโฒ1+1
2
1
๐ต๐ป
โ
๐
๐ป1+1 ๐ป2+1 โฆ โฆ โฆ โฆ โฆ โฆ โฆ ๐ป
1 ๐ป
1] ,
๐โ1+
๐+
2
2
2
๐ปโฒ 2+1
โฆ
โฆ
โฆ
2
โฆ
โฆ
โฆ
๐ปโฒ ๐โ1
โฆ
2
2
๐
๐ปโฒ ๐+1 ] , and
2
A is the derivative matrix of the WCS. A is a tri-diagonal matrix, which can be written
as follows:
๐0
๐
๐0
๐
๐
๐
๐
๐
๐
๐
โฑ
๐ด=
๐
โฑ
๐
โฑ
๐
๐
๐
๐
๐
[
1
1
where ๐ = 3 , ๐ = 1, ๐๐๐ ๐ = 3 .
44
๐
๐
๐
๐
๐
โฑ
๐
โฑ
๐
โฑ
๐
๐
๐
๐
๐๐
๐
๐๐ ]
Also, the matrix B can be written as:
๐ก0
๐ 1
๐
๐0
๐ก1
๐
๐
๐0
๐1
๐ก
๐
โฑ
๐1
๐
๐ก
โฑ
๐
๐ต=
๐
๐
โฑ
๐
๐
๐
โฑ
๐ก
๐
๐
โฑ
๐
๐ก
๐
โฑ
๐
๐
๐ก
โฑ
๐
๐
๐
โฑ
๐
๐
๐
โฑ
๐ก
๐ ๐
๐๐
[
where ๐
โฑ
๐
๐ก๐
๐ ๐
๐
๐๐
๐ก๐ ]
1
= 23
, ๐ = โ 79 , ๐ก = 0, ๐ = โ 19 , ๐๐๐ ๐ = 36
.
36
Near shock areas, the bias weights from the WENO scheme (3.22) are used with p=1.
Let us assume the shock location is detected as shown below:
๐0
๐
๐ด=
๐0
๐
๐
๐
๐
๐
๐
๐
โฑ
๐
โฑ
๐
โฑ
๐
๐
๐
๐
๐
[
๐
๐
๐
๐
๐
โฑ
the shock
location
๐
โฑ
๐
โฑ
๐
๐
๐
๐
๐๐
๐
๐๐ ]
WCS minimizes the influence of a shock-containing candidate stencil by assigning a
smaller weight. However, WCS is global dependent resulting from the use of all grid
points including the downstream points (inside the triangles) to get the derivative, and
such usage is prohibited for the shock case.
45
As illustrated in (3.38), the 7th order WUCS can be used in smooth areas, and it is given
as follows:
3
4
8
๐ฬ๐โ3 โ ๐ฬ๐โ1 โ 2๐ฬ๐+1 โ
๐ฬ 3
13
13
13 ๐+2
2
2
2
=
1
5
239
81
7
๐๐โ2 +
๐๐โ1 โ
๐๐ โ ๐๐+1 โ
๐
39
12
156
52
156 ๐+2
The WUCS can be written in a matrix form as
๐ด๐นฬ = ๐บ
where A is the derivative matrix of the WUCS, which is a penta-diagonal matrix that
can be written as follows:
1
0
0
0
1
0
๐
0
0
1
๐
โฑ
๐ด=
0
0
๐
โฑ
๐
0
๐
โฑ
๐
๐
๐
โฑ
๐
๐
๐
โฑ
๐
๐
๐
โฑ
๐
๐
๐
โฑ
๐
๐
๐
โฑ
๐
0
[
where ๐ =
ฬ
๐นฬ = [๐12
3
13
,๐ = โ
๐ฬ1+1
2
๐บ = ๐ต๐น = [๐0
where ๐น = [๐0
4
13
, ๐ = โ2, ๐ = โ
๐ฬ2+1
2
๐1
๐1
2
โฆ
โฆ
โฆ
๐
โฑ
๐
0
0
โฑ
๐
1
0
๐
0
1]
, ๐๐๐ ๐ = 0.
โฆ โฆ โฆ โฆ โฆ โฆ โฆ ๐ฬ 1
๐โ
๐2
๐2
8
13
,
โฆ
โฆ
โฆ
โฆ
โฆ โฆ โฆ โฆ โฆ โฆ โฆ ๐๐โ1
46
๐
๐ฬ๐+1 ] , and
2
๐๐โ1
๐๐ ]๐
๐๐ ]๐ and
๐1
๐1
๐4
๐
๐ต=
๐2
๐2
๐4
๐
โฑ
๐3
๐3
๐4
๐ก
โฑ
๐
๐4
๐4
๐4
๐ข
โฑ
๐
๐
๐5
๐5
๐4
๐ฃ
โฑ
๐ก
๐
๐
๐6
๐6
๐4
๐7
๐7
๐4
โฑ
๐ข
๐ก
๐
๐
๐ฃ
๐ข
๐ก
๐
โฑ
๐1
๐1
[
๐ฃ
๐ข
๐ก
โฑ
๐
๐2
๐2
๐ฃ
๐ข
โฑ
๐
๐3
๐3
๐ฃ
โฑ
๐ก
๐4
๐4
โฑ
๐ข
๐5
๐5
๐ฃ
๐6
๐6
๐7
๐7 ]
where
๐=
1
5
239
81
7
,๐ =
,๐ก = โ
,๐ข = โ ,๐ฃ = โ
,
39
12
156
52
156
๐1 =
363
617
853
2341
667
43
1
,๐ = โ
,๐ =
,๐ = โ
, ๐5 =
,๐ = โ
,๐ = ,
140 2
140 3 140 4
420
210 6
42 7 7
๐1 =
1
223
197
153
241
37
1
, ๐2 =
, ๐3 = โ
, ๐4 =
, ๐5 = โ
, ๐6 =
, ๐7 = โ
,
7
140
140
140
420
210
42
๐1 = โ
1
13
153
241
109
31
1
,๐ =
,๐ =
,๐ = โ
,๐ =
,๐ = โ
,๐ =
,
42 2 42 3 140 4
420 5 140 6
420 7 105
๐1 = โ
1
37
241
153
197
223
1
, ๐2 =
, ๐3 = โ
, ๐4 = โ
, ๐5 = โ
, ๐6 =
, ๐7 = ,
42
210
420
140
140
140
7
๐1 =
1
43
667
2341
853
617
363
, ๐2 = โ
, ๐3 =
, ๐4 = โ
, ๐5 =
, ๐6 = โ
, ๐๐๐ ๐7 =
.
7
42
210
420
140
140
140
Suppose the shock is located between ๐k and ๐k+1 as shown below:
๐บ = ๐ต๐น
47
๐1 ๐2 ๐3 ๐4 ๐5 ๐6 ๐7
๐0
๐0
๐
๐
๐
๐
๐
๐
๐
๐1
๐1
1
2
3
4
5
6
7
๐2
๐4 ๐4 ๐4 ๐4 ๐4 ๐4 ๐4
๐2
๐3
๐3
๐
๐
๐ก
๐ข ๐ฃ
โฎ
โฎ
โฑ โฑ โฑ โฑ โฑ
๐๐โ1
๐kโ1
๐
๐
๐ก
๐ข ๐ฃ
๐๐ =
๐k
๐
๐
๐ก
๐ข ๐ฃ
๐๐+1
f
๐
๐
๐ก
๐ข ๐ฃ
๐+1
๐๐+2
๐k+2
๐
๐
๐ก
๐ข ๐ฃ
โฎ
โฎ
โฑ โฑ โฑ โฑ โฑ
๐๐โ2
๐
๐
๐
๐ก
๐ข ๐ฃ
๐โ2
๐๐โ1
๐1 ๐2 ๐3 ๐4 ๐5 ๐6 ๐7 ๐๐โ1
[ ๐๐ ] [
๐1 ๐2 ๐3 ๐4 ๐5 ๐6 ๐7 ] [ ๐๐ ]
the shock
location
The location of the shock in the derivative matrix A will be located as follows:
๐ด๐นฬ = ๐บ
1
0
0
0
1
0
๐
0
0
1
๐
โฑ
๐ฬ1
2
0
0
๐
โฑ
๐
๐ฬ1+1
2
0
๐
โฑ
๐
๐
๐ฬ2+1
2
๐
โฑ
๐
๐
๐
๐ฬ3+1
โฑ
๐
๐
๐
๐
2
โฎ
๐
๐
๐
๐
โฑ
[
๐ฬ๐โ1+1
2
๐
๐
๐
โฑ
๐
๐ฬ๐+1
2
๐
๐
โฑ
๐
0
๐ฬ๐+1+1
๐
โฑ
๐
0
0
2
โฑ
๐
1
0
๐ฬ๐+2+1
2
โฎ
๐
0
1]
๐ฬ๐โ1โ1
2
๐ฬ๐โ1
2
[
๐ฬ๐+1
2
]
๐0
๐1
๐2
๐3
โฎ
๐๐โ1
๐๐
the shock
=
๐๐+1
location
๐๐+2
โฎ
๐๐โ2
๐๐โ1
[ ๐๐ ]
The elements inside the triangle lead to the global dependency problem because of
the downstream points ๐k+1 and ๐k+2 , which means using ๐k+1 and ๐k+2 to get the
derivative of ๐k . This problem is avoided in WUCS by decoupling the derivative matrix
into two submatrices as shown below.
48
1
0
0
0
1
0
๐
0
0
1
๐
โฑ
๐ฬ1
2
0
0
๐
โฑ
๐
๐ฬ1+1
2
0
๐
โฑ
๐
๐
๐ฬ2+1
๐0
๐1
๐2
๐3
โฎ
๐๐โ1
= ๐๐
๐๐+1
๐๐+2
โฎ
๐๐โ2
๐๐โ1
[ ๐๐ ]
2
๐
โฑ
๐
๐
๐
๐ฬ3+1
โฑ
๐
๐
๐
๐
2
โฎ
๐
๐
๐
๐
โฑ
๐ฬ๐โ1+1
2
๐ฬ๐+1
๐
๐
๐
โฑ
๐
2
๐
๐
โฑ
๐
0
[
๐ฬ๐+1+1
๐
โฑ
๐
0
0
2
โฑ
๐
1
0
๐ฬ๐+2+1
2
โฎ
๐
0
1]
๐ฬ๐โ1โ1
2
๐ฬ๐โ1
2
[
๐ฬ๐+1
2
]
The shock points are treated as boundary points, so the elements inside the two triangles
above become zeros. The resulting subsystems or submatrices are
1
0
0
0
1
0
๐
0
0
1
๐
โฑ
[
0
1
0
๐
0
0
1
๐
โฑ
]
๐๐+1
๐๐+2
๐๐+3
๐๐+4
โฎ .
=
โฎ
๐๐โ2
๐๐โ1
[ ๐๐ ]
2
0
0
๐
โฑ
โฑ
๐ฬ1+1
2
0
๐
โฑ
โฑ
๐
๐ฬ2+1
๐
โฑ
โฑ
๐
[
1
0
0
]
๐0
๐1
๐2
๐3
=
โฎ and
โฎ
๐๐โ2
๐๐โ1
[ ๐๐ ]
๐ฬ1
2
โฑ
โฑ
๐
0
0
๐ฬ3+1
2
โฑ
๐
1
0
โฎ
โฎ
๐
0
1]
๐ฬ๐โ2+1
2
๐ฬ๐โ1+1
2
[
๐ฬ๐+1
2
๐ฬ๐+1+1
2
0
0
๐
โฑ
โฑ
๐ฬ๐+2+1
2
0
๐
โฑ
โฑ
๐
๐ฬ๐+2+1
๐
โฑ
โฑ
๐
2
โฑ
โฑ
๐
0
0
๐ฬ๐+2+1
2
โฑ
๐
1
0
โฎ
โฎ
๐
0
1]
๐ฬ๐โ1โ1
2
๐ฬ๐โ1
2
[
49
๐ฬ๐+1
2
the
shock
location
Also, the right hand side of the system will be decoupled into the following subsystems:
๐0
๐1
๐2
๐3
โฎ
โฎ
โฎ =
โฎ
โฎ
โฎ
๐๐โ2
๐๐โ1
[ ๐๐ ]
๐๐+1
๐๐+2
๐๐+3
๐๐+4
โฎ
โฎ
โฎ =
โฎ
โฎ
โฎ
๐๐โ2
๐๐โ1
[ ๐๐ ]
๐1
๐1
๐4
๐
๐2
๐2
๐4
๐
โฑ
๐3
๐3
๐4
๐ก
โฑ
๐
๐4
๐4
๐4
๐ข
โฑ
๐
๐
๐5
๐5
๐4
๐ฃ
โฑ
๐ก
๐
๐
๐6
๐6
๐4
โฑ
๐ข
๐ก
๐
๐
๐ฃ
๐ข
๐ก
๐
โฑ
๐1
๐1
[
๐1
๐1
๐4
๐
[
๐2
๐2
๐4
๐
โฑ
๐3
๐3
๐4
๐ก
โฑ
๐
๐4
๐4
๐4
๐ข
โฑ
๐
๐
๐5
๐5
๐4
๐ฃ
โฑ
๐ก
๐
๐
๐6
๐6
๐4
โฑ
๐ข
๐ก
๐
๐
๐ฃ
๐6
๐6
๐0
๐1
๐2
๐3
โฎ
โฎ
and
โฎ
โฎ
โฎ
โฎ
๐๐โ2
๐7 ๐๐โ1
๐7 ] [ ๐๐ ]
๐ฃ
๐6
๐6
๐๐+1
๐๐+2
๐๐+3
๐๐+4
โฎ
โฎ
โฎ .
โฎ
โฎ
โฎ
๐๐โ2
๐7 ๐๐โ1
๐7 ] [ ๐๐ ]
๐7
๐7
๐4
๐ฃ
๐ข
๐ก
โฑ
๐
๐2
๐2
๐ฃ
๐ข
โฑ
๐
๐3
๐3
๐ฃ
โฑ
๐ก
๐4
๐4
โฑ
๐ข
๐5
๐5
๐7
๐7
๐4
๐ฃ
๐ข
๐ก
๐
โฑ
๐1
๐1
๐ฃ
๐ข
๐ก
โฑ
๐
๐2
๐2
๐ฃ
๐ข
โฑ
๐
๐3
๐3
50
๐ฃ
โฑ
๐ก
๐4
๐4
โฑ
๐ข
๐5
๐5
3.5 Conclusion
In this chapter, the Weighted Upwinding Compact Scheme (WUCS), which
belongs to the family of finite difference schemes, is proposed. Based on the analysis of
the dissipation and dispersion errors, the upwinding candidates are constructed in a way
such that the left and central candidates have a non-negative dissipation. In addition, the
analysis shows that WUCS has small dispersion errors and achieves the highest resolution
compared to WCS and the WENO scheme.
Furthermore, the global dependency problem, using all grid points including the
downstream points to get the derivative, is prohibited for the shock case, so it is avoided
with WUCS by decoupling the system into two subsystems.
51
© Copyright 2026 Paperzz