chapter 3.

CHAPTER 3
WEIGHTED UPWINDING COMPACT SCHEME (WUCS)
3.1 Numerical Formula
A Weighted Upwinding Compact Scheme (WUCS) uses the idea of Weighted
Compact Scheme (WCS) to increase the order at each stencil. Also, WUCS applies the
bias weight from the WENO scheme at each stencil according to the smoothness of
each one. In the present section, a brief description for each scheme that related to
WUCS is provided.
3.1.1. Essentially Non-Oscillatory (ENO) scheme and conservative reconstruction
In 1987, Harten, Osher, Engquist, and Chakravarthy introduced the ENO scheme
in the form of cell averages. Among several stencils, the ENO scheme chooses the
smoothest one to approximate the fluxes at cell boundaries to increase the order and to
reduce oscillations near the boundaries. The conservative property of the scheme is
essential, especially when dealing with problems that have discontinuities because large
errors will be generated near discontinuities when using neoconservative methods. One
problem with the finite difference compact schemes is the conservative property of the
schemes. The cell-averaged version of the ENO scheme is costly and complicated for
multi-dimensional problems because of the procedure of reconstructing point values from
cell averages. Hence, to avoid this reconstruction procedure, the flux version of the ENO
scheme was introduced by Shu (1988) and Osher (1989). In this work, the ENO
16
reconstruction method is used together with a weighted compact scheme to obtain
conservation as described below (Shu & Osher, 1988, 1989). For 1-D conservation laws,
๐‘ข๐‘ก (๐‘ฅ, ๐‘ก) + ๐‘“๐‘ฅ (๐‘ข(๐‘ฅ, ๐‘ก)) = 0
(3.1)
After discretizing the domain, the cell interface (grid), the cell center, and the cell size
are defined as follows, respectively.
๐‘Ž = ๐‘ฅ1/2 < ๐‘ฅ3/2 < ๐‘ฅ5/2 < โ‹ฏ < ๐‘ฅ๐‘โˆ’1 < ๐‘ฅ๐‘+1 = ๐‘
2
(3.2)
2
1
๐‘ฅ๐‘— = 2 (๐‘ฅ๐‘—โˆ’1 + ๐‘ฅ๐‘—+1 )
2
(3.3)
2
โ„Ž = ๐‘ฅ๐‘—+1 โˆ’ ๐‘ฅ๐‘—โˆ’1 , ๐‘— = 1,2, โ€ฆ , ๐‘
2
2
Figure 3.1 below illustrates the grid above where the triangles denote the cell interfaces
(3.2), and the circles denote the cell centers (3.3).
๐‘ฅ๐‘—โˆ’7
๐‘ฅ
๐‘—โˆ’
2
๐‘ฅ๐‘—โˆ’3
๐‘ฅ๐‘—โˆ’3
5
2
๐‘ฅ๐‘—+3
2
2
๐‘ฅ๐‘—
๐‘ฅ๐‘—โˆ’1
๐‘ฅ๐‘—โˆ’2
๐‘ฅ๐‘—+1
๐‘ฅ๐‘—โˆ’1
2
๐‘ฅ
๐‘—+
2
๐‘ฅ๐‘—+1
๐‘ฅ๐‘—+2
Figure 3.1. Grid for 1-D case.
A semi-discrete conservative form of (3.1) can be described when a conservative
approximation to the spatial derivative is applied as follows:
๐‘‘๐‘ข๐‘—
๐‘‘๐‘ก
โˆ’(๐‘“ฬ‚
=
๐‘—+
1 โˆ’๐‘“ฬ‚ 1 )
๐‘—โˆ’
2
2
โ„Ž
where ๐‘“ฬ‚ is the numerical flux,
17
(3.4)
5
2
๐‘ฅ
โˆซ๐‘ฅ
๐‘“๐‘— = ๐‘“ (๐‘ข(๐‘ฅ๐‘— , ๐‘ก)) =
1
๐‘—+
2 ๐‘“ฬ‚ (๐œ‰)๐‘‘๐œ‰
1
๐‘—โˆ’
2
โ„Ž
,
(3.5)
h is the step size in the x-direction, and H is the primitive function of ๐‘“ฬ‚ defined as
๐‘ฅ
1
๐‘ฅ 1
๐‘—
๐‘—
๐‘—+ ฬ‚
๐‘–+ ฬ‚
2 ๐‘“ (๐œ‰)๐‘‘๐œ‰ = โˆ‘
2
๐ป๐‘—+1 = ๐ป (๐‘ฅ๐‘—+1 ) = โˆซโˆ’โˆž
๐‘–=โˆ’โˆž โˆซ๐‘ฅ 1 ๐‘“ (๐œ‰)๐‘‘๐œ‰ = โˆ‘๐‘–=โˆ’โˆž ๐‘“๐‘– โ„Ž
2
2
(3.6)
๐‘–โˆ’
2
(๐ป
1 โˆ’๐ป 1 )
๐‘—+
๐‘—โˆ’
2
2
๐‘“๐‘— =
๐ปโ€ฒ๐‘—+1 = ๐‘“ฬ‚๐‘—+1
2
โ€ฒ
๐‘“ (๐‘ฅ๐‘— ) =
, ๐ปโ€ฒ๐‘—โˆ’1 = ๐‘“ฬ‚๐‘—โˆ’1
2
๐‘“๐‘—โ€ฒ
(3.7)
โ„Ž
(๐‘“ฬ‚
=
2
๐‘—+
1 โˆ’๐‘“ฬ‚ 1 )
๐‘—โˆ’
2
2
โ„Ž
(๐ปโ€ฒ
=
(3.8)
2
๐‘—+
1 โˆ’๐ปโ€ฒ 1 )
๐‘—โˆ’
2
2
โ„Ž
(3.9)
The described procedure above can be illustrated as follows:
๐‘“ โ†’ ๐ป โ†’ ๐ปโ€ฒ = ๐‘“ฬ‚ โ†’ ๐‘“ โ€ฒ
Indeed, the only approximation involved is the calculation of the derivative of the
primitive function ๐ป. The ENO scheme is successfully applied to many numerical
experiments, but it has some drawbacks. One problem with the ENO scheme is the high
cost of heavy usage of logical statements. Another problem is the free adaptive stencil,
which is not required for smooth regions.
3.1.2. 5th order Weighted Essentially Non-Oscillatory (WENO) scheme
To keep the advantages of the ENO scheme and overcome its drawbacks, Liu, Osher, and
Chan proposed the Weighted Essentially Non-Oscillatory (WENO) scheme. The main
idea of the WENO scheme is to assign optimal weights for all stencils to get a high order
18
scheme in smooth areas and to assign bias weights near discontinuities to avoid the stencil
containing a shock.
3.1.2.1. Flux approximation
In order to get the derivative of the given function f at the point x(j), first the
approximation of ๐ปโ€ฒ๐‘—+1 = ๐‘“ฬ‚๐‘—+1 is needed. Three candidates are given from the three
2
2
stencils,
๐‘† 0 = {๐น๐‘—โˆ’2 , ๐น๐‘—โˆ’1 , ๐น๐‘— } , ๐‘† 1 = {๐น๐‘—โˆ’1 , ๐น๐‘— , ๐น๐‘—+1 } , and ๐‘† 2 = {๐น๐‘— , ๐น๐‘—+1 , ๐น๐‘—+2 }
(3.10)
as shown in figure 3.2.
2
S0
๐‘ฅ๐‘—โˆ’30
๐‘ฅ๐‘—โˆ’5
๐‘ฅ๐‘—โˆ’1
2
2
๐‘ฅ๐‘—+1
2
2
S
๐‘ฅ๐‘—+3
2
๐‘ฅ๐‘—+5
2
1
S
Figure 3.2. The stencils for the WENO scheme.
Each candidate is a third order polynomial, which can be found as follows.
For the left stencil ๐‘† 0 = {๐น๐‘—โˆ’2 , ๐น๐‘—โˆ’1 , ๐น๐‘— }, let
๐ปโ€ฒ๐‘—+1 = โˆ ๐น๐‘—โˆ’2 + ๐›ฝ๐น๐‘—โˆ’1 + ๐›พ๐น๐‘—
(3.11)
2
Substituting (3.7) in (3.11) results in
๐ปโ€ฒ๐‘—+1 =
โˆ (๐ป๐‘—โˆ’2+1 โˆ’ ๐ป๐‘—โˆ’2โˆ’1 ) + ๐›ฝ(๐ป๐‘—โˆ’1+1 โˆ’ ๐ป๐‘—โˆ’1โˆ’1 ) + ๐›พ(๐ป๐‘—+1 โˆ’ ๐ป๐‘—โˆ’1 )
2
2
2
2
2
โ„Ž
2
โ„Ž ๐ปโ€ฒ๐‘—+1 = โˆ’๐›ผ๐ป๐‘—โˆ’2 + (โˆ โˆ’๐›ฝ)๐ป๐‘—โˆ’1 + (๐›ฝ โˆ’ ๐›พ)๐ป๐‘— + ๐›พ๐ป๐‘—+1
19
2
Letting h=1, j=0, and H=1,x,x2,x3 gives the following system of equations:
1 =โˆ +๐›ฝ + ๐›พ
2 = โˆ’3 โˆ โˆ’๐›ฝ + ๐›พ
3 = 7 โˆ +๐›ฝ + ๐›พ
1
Hence,
๐‘† 0 : ๐ปโ€ฒ
(๐‘† 0 )
๐‘—+
7
โˆ= 3 , ๐›ฝ = โˆ’ 6 , and ๐›พ =
The solution of the above system is
1
2
1
7
= 3 ๐น๐‘—โˆ’2 โˆ’ 6 ๐น๐‘—โˆ’1 +
11
11
6
๐น๐‘—
(3.12)
= โˆ’ 6 ๐น๐‘—โˆ’1 + 6 ๐น๐‘— + 3 ๐น๐‘—+1
(3.13)
6
Similarly,
๐‘†1: ๐ปโ€ฒ
(๐‘† 1 )
1
๐‘—+
2
๐‘† 2 : ๐ปโ€ฒ
(๐‘† 2 )
๐‘—+
1
2
1
1
5
5
1
1
= 3 ๐น๐‘— + 6 ๐น๐‘—+1 โˆ’ 6 ๐น๐‘—+2
(3.14)
3.1.2.2. Optimal weights for a high order accuracy
A weighted average of the three stencils is considered with constant weights ๐‘ 0 , ๐‘ 1 , and
๐‘ 2 , such that
๐‘† = ๐‘ 0 ๐‘† 0 + ๐‘ 1 ๐‘† 1 +๐‘ 2 ๐‘† 2
(3.15)
For consistency of the scheme, (3.16) below should be satisfied
โˆ‘2๐‘–=0 ๐‘ i = 1
(3.16)
Substituting (3.12), (3.13), and (3.14) in (3.15) implies that
1
7
11
1
5
๐‘ 0 ๐ปโ€ฒ๐‘—+1 + ๐‘1 ๐ปโ€ฒ๐‘—+1 + ๐‘ 2 ๐ปโ€ฒ๐‘—+1 = ๐‘ 0 ( ๐น๐‘—โˆ’2 โˆ’ ๐น๐‘—โˆ’1 +
๐น๐‘— ) + ๐‘ 1 (โˆ’ ๐น๐‘—โˆ’1 + ๐น๐‘—
3
6
6
6
6
2
2
2
1
1
5
1
+ ๐น๐‘—+1 )+๐‘ 2 ( ๐น๐‘— + ๐น๐‘—+1 โˆ’ ๐น๐‘—+2 )
3
3
6
6
20
1
7
11
3
6
6
๐ปโ€ฒ๐‘—+1 = ๐‘ 0 ( ๐น๐‘—โˆ’2 โˆ’ ๐น๐‘—โˆ’1 +
2
1
5
1
1
5
1
6
6
3
3
6
6
๐น๐‘— ) + ๐‘1 (โˆ’ ๐น๐‘—โˆ’1 + ๐น๐‘— + ๐น๐‘—+1 )+๐‘ 2 ( ๐น๐‘— + ๐น๐‘—+1 โˆ’ ๐น๐‘—+2 )
(3.17)
From (3.16), we have
๐‘ 0 + ๐‘1 + ๐‘ 2 = 1
The two other equations can be found by letting h=1, j=0, and H=x4,x5 in (3.17).
Finally, when solving a 3x3 system, we have
1
6
3
๐‘ 0 = 10 , ๐‘ 1 = 10 , ๐‘ 2 = 10
(3.18)
Now, substituting (3.18) in (3.17) gives
๐ปโ€ฒ๐‘—+1 = โˆ‘2๐‘–=0 ๐‘ i ๐ปโ€ฒ
(๐‘† i )
1
๐‘—+
2
2
1
13
47
9
1
= 30 ๐น๐‘—โˆ’2 โˆ’ 60 ๐น๐‘—โˆ’1 + 60 ๐น๐‘— + 20 ๐น๐‘—+1 โˆ’ 20 ๐น๐‘—+2
(3.19)
Applying (3.19) in (3.9) leads to
๐น โ€ฒ๐‘— =
1
30
1
4
1
3
1
2
1
20
(โˆ’ ๐น๐‘—โˆ’3 + ๐น๐‘—โˆ’2 โˆ’๐น๐‘—โˆ’1 + ๐น๐‘— + ๐น๐‘—+1 โˆ’ ๐น๐‘—+2 )
โ„Ž
(3.20)
Using the Taylor expansion for ๐น๐‘—โˆ’k results in
๐นฬ‚
๐น โ€ฒ๐‘—
โˆ’
ฬ‚ 1
1 โˆ’๐น
๐‘—+
๐‘—โˆ’
2
2
โ„Ž
1
(6)
= 60 โ„Ž5 ๐น๐‘—
1
(7)
โˆ’ 140 โ„Ž6 ๐น๐‘—
1
(8)
+ 240 โ„Ž7 ๐น๐‘—
+โ‹ฏ
(3.21)
(3.21) shows that the scheme with optimal weights and 6 grid points has a 5th order
truncation error, and it is the standard 5th order bias upwind finite difference scheme.
3.1.2.3. Non-linear weights for shock capturing
The use of the constant weights ๐‘ 0 , ๐‘ 1 , and ๐‘ 2 does not allow for an adaptive scheme
according to the โ€œsmoothnessโ€ of the stencils. The non-linear weights of the WENO
scheme adaptively chose each stencil due to its smoothness, and they are defined as
follows:
21
๐‘–
๐œ”๐‘—±
1
2
โˆ๐‘– 1
๐‘—±
2
๐‘˜
๐‘˜=0 โˆ๐‘—±1
2
= โˆ‘2
๐‘–
, โˆ๐‘—±
1=
2
๐‘i
๐‘
,
๐‘– = 0,1,2
(3.22)
(๐œ€+๐ผ๐‘† ๐‘– 1 )
๐‘—±
2
where ๐œ€ is a small quantity to avoid the division by zero, and p is an integer number.
๐‘–
For consistency of the scheme, we must satisfy โˆ‘2๐‘–=0 ๐œ”๐‘—±
1 = 1.
2
๐‘–
๐ผ๐‘†๐‘—±
1 is a โ€œsmoothnessโ€ indicator calculated by
2
13
2
1
13
2
1
13
2
1
0
๐ผ๐‘†๐‘—±
(๐น โˆ’ 2๐น๐‘—โˆ’1 + ๐น๐‘— ) + 4 (๐น๐‘—โˆ’2 โˆ’ 4๐น๐‘—โˆ’1 + 3๐น๐‘— )
1 =
12 ๐‘—โˆ’2
2
2
1
๐ผ๐‘†๐‘—±
(๐น โˆ’ 2๐น๐‘— + ๐น๐‘—+1 ) + 4 (๐น๐‘—โˆ’1 โˆ’ ๐น๐‘—+1 )
1 =
12 ๐‘—โˆ’1
2
(3.23)
2
2
๐ผ๐‘†๐‘—±
(๐น โˆ’ 2๐น๐‘—+1 + ๐น๐‘—+2 ) + 4 (๐น๐‘—+2 โˆ’ 4๐น๐‘—+1 + 3๐น๐‘— )
1 =
12 ๐‘—
2
2
Finally, we have
๐‘–
(๐‘† )
๐‘–
๐นฬ‚๐‘—±1 = ๐ปโ€ฒ๐‘—±1 = โˆ‘2๐‘–=0 ๐œ”๐‘—±
1 ๐ปโ€ฒ 1
2
2
2
๐‘—±
2
3.1.2.4. Boundary points schemes
The following schemes are special 3rd order schemes for the boundary points:
Point 0,
11
7
1
๐นฬ‚๐‘—โˆ’1 = 6 ๐น๐‘—โˆ’1 โˆ’ 6 ๐น๐‘— + 3 ๐น๐‘—+1
2
Point 1,
1
5
1
๐นฬ‚๐‘—โˆ’1 = 3 ๐น๐‘— + 6 ๐น๐‘—+1 โˆ’ 6 ๐น๐‘—+2
2
Point 2,
1
5
1
๐นฬ‚๐‘—โˆ’1 = โˆ’ 6 ๐น๐‘—โˆ’2 + 6 ๐น๐‘—โˆ’1 + 3 ๐น๐‘—
2
Point N-1,
1
5
1
๐นฬ‚๐‘—โˆ’1 = โˆ’ 6 ๐น๐‘—โˆ’1 + 6 ๐น๐‘— + 3 ๐น๐‘—+1
2
Point N,
1
7
11
๐นฬ‚๐‘—โˆ’1 = 3 ๐น๐‘—โˆ’2 โˆ’ 6 ๐น๐‘—โˆ’1 + 6 ๐น๐‘—
2
22
(3.24)
The WENO scheme is a successful scheme by many users. However, some researchers
in the DNS/LES community consider the scheme too dissipative for flow transition and
turbulence because it has a 5th order dissipation everywhere, and it is a 3rd order
dissipation near the shock. Also, the cost associated with the WENO scheme is a little
high because of the complexity of calculating the weights in each stencil at each iteration
step.
3.1.3. The finite difference Compact Scheme (CS)
With a uniform grid (Figure 3.3.), consider ๐‘ฅ๐‘— = โ„Ž(๐‘— โˆ’ 1), ๐‘“๐‘— = ๐‘“(๐‘ฅ๐‘— ), and ๐‘“๐‘—โ€ฒ as the
independent variable, the given function value, and the finite difference approximation to
the first derivative of the function f at the point j for 1 โ‰ค ๐‘— โ‰ค ๐‘ respectively.
Figure 3.3. 1-D grid for the compact scheme.
The main idea of the compact schemes is to increase the order of the scheme by involving
the function and its derivatives at the same given points. In the non-symmetric finite
difference compact scheme (CS) (Lele, 1992), ๐‘“๐‘—โ€ฒ can be computed using the following
formula:
โ€ฒ
โ€ฒ
โ€ฒ
โ€ฒ
๐›ฝโˆ’ ๐‘“๐‘—โˆ’2
+ ๐›ผโˆ’ ๐‘“๐‘—โˆ’1
+ ๐‘“๐‘—โ€ฒ + ๐›ผ+ ๐‘“๐‘—+1
+ ๐›ฝ+ ๐‘“๐‘—+2
=
๐‘โˆ’ ๐น๐‘—โˆ’3 +๐‘โˆ’ ๐น๐‘—โˆ’2 +๐‘Žโˆ’๐น๐‘—โˆ’1 +๐‘Ž+ ๐น๐‘—+1 +๐‘+ ๐น๐‘—+2 +๐‘+๐น๐‘—+3
โ„Ž
(3.25)
The relations between the coefficients ๐›ผ+ , ๐›ผโˆ’ , ๐›ฝ+ , ๐›ฝโˆ’ , ๐‘Ž+ , ๐‘Žโˆ’ , ๐‘+ , ๐‘โˆ’ , ๐‘+ , and ๐‘โˆ’ are
derived by matching the Taylor series coefficients of various orders or using f(x)=1,x,x2,
23
โ€ฆ, xk. The first unmatched coefficients determine the formal truncation error of the
approximation above. For the symmetric CS, the scheme can be constructed using the
formula below:
๐›ฝ๐นโ€ฒ๐‘—โˆ’2 + ๐›ผ๐นโ€ฒ๐‘—โˆ’1 +๐นโ€ฒ๐‘— + ๐›ผ๐นโ€ฒ๐‘—+1 + ๐›ฝ๐นโ€ฒ๐‘—+2 = ๐‘
๐น๐‘—+3 โˆ’๐น๐‘—โˆ’3
6โ„Ž
+๐‘
๐น๐‘—+2 โˆ’๐น๐‘—โˆ’2
4โ„Ž
+๐‘Ž
๐น๐‘—+1 โˆ’๐น๐‘—โˆ’1
2โ„Ž
(3.26)
Letting h=1, j=0, and F=1, x in (3.26) gives a 2nd order approximation as follows:
๐›ฝ โˆ— 1 + ๐›ผ โˆ— 1+๐น โ€ฒ๐‘— + ๐›ผ โˆ— 1 + ๐›ฝ โˆ— 1 = ๐‘
Hence,
3โ„Ž โˆ’ (โˆ’3โ„Ž)
2โ„Ž โˆ’ (โˆ’2โ„Ž)
โ„Ž โˆ’ (โˆ’โ„Ž)
+๐‘
+๐‘Ž
6โ„Ž
4โ„Ž
2โ„Ž
๐‘Ž + ๐‘ + ๐‘ = 1 + 2๐›ผ+2๐›ฝ
3!
Similarly, ๐‘Ž + 22 ๐‘ + 32 ๐‘ = 2 2!(๐›ผ+22 ๐›ฝ)
(4th order)
5!
(6th order)
7!
(8th order)
9!
(10th order)
๐‘Ž + 24 ๐‘ + 34 ๐‘ = 2 4!(๐›ผ+24 ๐›ฝ)
๐‘Ž + 26 ๐‘ + 36 ๐‘ = 2 6!(๐›ผ+26 ๐›ฝ)
๐‘Ž + 28 ๐‘ + 38 ๐‘ = 2 8 (๐›ผ+28 ๐›ฝ)
Although the idea of CS can increase the order of the scheme without increasing the
number of the grid points, it cannot capture the shocks because of the global dependence
on the data set.
3.1.4. Weighted Compact Scheme (WCS)
WCS aims to use a weighted average of two 3rd order and one 4th order approximations
for the numerical flux where each approximation involves the primitive function H and
its derivative at different points. To obtain the approximations for ๐ปโ€ฒ๐‘—+1 , three candidate
2
stencils,
24
๐‘† 0 = {๐ป๐‘—โˆ’3 , ๐ป๐‘—โˆ’1 , ๐ป๐‘—+1 } , ๐‘† 1 = {๐ป๐‘—โˆ’1 , ๐ป๐‘—+1 , ๐ป๐‘—+3 }, and ๐‘† 2 = {๐ป๐‘—+1 , ๐ป๐‘—+3 , ๐ป๐‘—+5 },
2
2
2
2
2
2
2
2
(3.27)
2
are used as shown in figure 3.4.
2
S0
S
0
1
S
Figure 3.4. The stencils for WCS.
Similar to the WENO scheme, three candidates from the three stencils can be constructed
as follows:
1
๐‘† 0:
1
5
2๐ปโ€ฒ๐‘—โˆ’1 + ๐ปโ€ฒ๐‘—+1 = โ„Ž (โˆ’ 2 ๐ป๐‘—โˆ’3 โˆ’ 2๐ป๐‘—โˆ’1 + 2 ๐ป๐‘—+1 )
2
1
๐‘†1:
4
2
2
1
2
3
2
2
2
1
5
2
2
2
(3.28)
(4th order)
(3.29)
(3rd order)
(3.30)
2
๐ปโ€ฒ๐‘—+1 + 2๐ปโ€ฒ๐‘—+3 = โ„Ž (2 ๐ป๐‘—+5 โˆ’ 2๐ป๐‘—+3 โˆ’ 2 ๐ป๐‘—+1 )
2
(3rd order)
2
๐ปโ€ฒ๐‘—โˆ’1 + ๐ปโ€ฒ๐‘—+1 + 4 ๐ปโ€ฒ๐‘—+3 = 4โ„Ž (๐ป๐‘—โˆ’3 โˆ’ ๐ป๐‘—โˆ’1 )
1
๐‘† 2:
2
2
If a weighted average of the three stencils is considered with different constant weights,
๐‘† = ๐‘ 0 ๐‘† 0 + ๐‘1 ๐‘† 1 +๐‘ 2 ๐‘† 2
we have
๐‘0 =
such that
1
18
8
1
9
18
, ๐‘ 1 = , ๐‘Ž๐‘›๐‘‘ ๐‘ 2 =
For consistency of the scheme, we must satisfy the equation โˆ‘2๐‘–=0 ๐‘ i = 1.
The scheme resulting from the weighted average of the three candidates is
1
3
1
1
23
7
1
1
๐ปโ€ฒ๐‘—โˆ’1 + ๐ปโ€ฒ๐‘—+1 + 3 ๐ปโ€ฒ๐‘—+3 โ‰ˆ โ„Ž (36 ๐ป๐‘—โˆ’3 โˆ’ 9 ๐ป๐‘—โˆ’1 โˆ’ 9 ๐ป๐‘—+3 + 36 ๐ป๐‘—+5 )
2
2
2
2
2
2
(3.31)
2
By using the Taylor expansion, it can be verified that the scheme is the standard 6th order
compact scheme as follows:
25
1
1
1
1
7
7
1
๐ปโ€ฒ๐‘—โˆ’1 + ๐ปโ€ฒ๐‘— + ๐ปโ€ฒ๐‘—+1 โˆ’ (โˆ’ ๐ป๐‘—โˆ’2 โˆ’ ๐ป๐‘—โˆ’1 + ๐ป๐‘—+1 + ๐ป๐‘—+2 )
3
3
โ„Ž
36
9
9
36
1
(7)
= โˆ’ 1260 โ„Ž6 ๐น๐‘—
1
(9)
โˆ’ 15120 โ„Ž8 ๐น๐‘—
+โ‹ฏ
(3.32)
3.1.5. Modified Upwinding Compact Scheme (MUCS)
The main idea of MUCS is using the WENO scheme to improve a 7th order upwinding
compact scheme by using a new shock detector to find the shock location and using a
new control function to mix the upwinding compact scheme with the WENO scheme near
the shock. The reason for using the upwind technology is to introduce some numerical
dissipation because the standard compact scheme has no dissipation. To obtain the 7th
order upwinding compact scheme (UCS), three 3rd order approximations of the linear
compact combination of numerical fluxes at ๐นฬ‚๐‘—โˆ’3 , ๐นฬ‚๐‘—โˆ’1 , ๐นฬ‚๐‘—+1 , ๐นฬ‚๐‘—+3 , ๐นฬ‚๐‘—+5 are obtained
2
2
2
2
2
from the three candidate stencils
๐‘† 0 = {๐น๐‘—โˆ’2 , ๐น๐‘—โˆ’1 , ๐น๐‘— }, ๐‘† 1 = {๐น๐‘—โˆ’1 , ๐น๐‘— , ๐น๐‘—+1 }, ๐‘Ž๐‘›๐‘‘ ๐‘† 2 = {๐น๐‘— , ๐น๐‘—+1 , ๐น๐‘—+2 }
The 7th order upwinding compact scheme (UCS) is
1
1
1 1
1
11
1
31
1
๐ปโ€ฒ 3 + ๐ปโ€ฒ 1 + ๐ปโ€ฒ 1 = โ„Ž (240 ๐ป๐‘—โˆ’7 โˆ’ 12 ๐ป๐‘—โˆ’5 โˆ’ 12 ๐ป๐‘—โˆ’3 + 3 ๐ป๐‘—โˆ’1 + 48 ๐ป๐‘—+1 + 60 ๐ป๐‘—+3 ) (3.33)
๐‘—โˆ’
๐‘—+
2 ๐‘—โˆ’2
4
2
2
2
2
2
2
2
2
MUCS makes the UCS able to capture the shock and keep a high order accuracy with
high resolution in the smooth areas. The shock detector is a switch function that gives
one for shocks and zero for others. The new control function ๐›บ is defined as
๐›บ โˆ— UCS + (1 โˆ’ ๐›บ) โˆ— WENO
26
3.1.6. Modified Weighted Compact Scheme (MWCS)
In MWCS, the WENO scheme and WCS are combined by a mixing function, which aims
to linearly combine the two schemes in order to gain a numerical stability, a sharp shockcapturing, and a good resolution for small length scales. The final formulation of the
numerical flux of MWCS is
(๐‘€๐‘Š๐ถ๐‘†)
(๐‘Š๐ถ๐‘†)
(๐‘Š๐ธ๐‘๐‘‚)
๐นฬ‚ 1
= (1 โˆ’ โˆ๐‘— ) ๐นฬ‚ 1 +โˆ๐‘— ๐นฬ‚ 1
๐‘—โˆ“
๐‘—โˆ“
2
๐‘—โˆ“
2
where
โˆ๐‘— = (0.5)*(1-
2
(3.34)
(๐ผ๐‘† 0 โˆ’ ๐ผ๐‘† 1 )2 + (๐ผ๐‘† 1 โˆ’ ๐ผ๐‘† 2 )2 + (๐ผ๐‘† 2 โˆ’ ๐ผ๐‘† 0 )2
2 โˆ— ((๐ผ๐‘† 0 )2 + (๐ผ๐‘† 1 )2 + (๐ผ๐‘† 2 )2 )
and ๐ผ๐‘† ๐‘– (i = 0,1,2) are the smoothness indicators (3.23) obtained from the WENO
scheme. Also, for consistency of the scheme, we must satisfy 0 โ‰คโˆ๐‘— โ‰ค 1
3.2 Weighted Upwinding Compact Scheme (WUCS)
3.2.1. Basic formulation of WUCS
For a given point j, three candidate stencils containing these points are defined as follows:
๐‘† 0 = {๐‘“๐‘—โˆ’2 , ๐‘“๐‘—โˆ’1 , ๐‘“๐‘— }
๐‘† 1 = {๐‘“๐‘—โˆ’1 , ๐‘“๐‘— , ๐‘“๐‘—+1 }
๐‘† 2 = {๐‘“๐‘— , ๐‘“๐‘—+1 , ๐‘“๐‘—+2 }
Below are the schemes for the three candidate stencils, which are calculated by repeating
the steps applied to (3.11) at each stencil.
1
1
19
10
๐‘† 0 : ๐‘“ฬ‚๐‘—โˆ’3 + 2๐‘“ฬ‚๐‘—โˆ’1 + 3 ๐‘“ฬ‚๐‘—+1 = 9 ๐‘“๐‘—โˆ’2 + 9 ๐‘“๐‘—โˆ’1 + 9 ๐‘“๐‘—
2
2
2
27
(3.35)
1
1
19
10
๐‘† 1 : โˆ’ ๐‘“ฬ‚๐‘—โˆ’1 โˆ’ 2๐‘“ฬ‚๐‘—+1 โˆ’ 3 ๐‘“ฬ‚๐‘—+3 = โˆ’ 9 ๐‘“๐‘—โˆ’1 โˆ’ 9 ๐‘“๐‘— โˆ’ 9 ๐‘“๐‘—+1
(3.36)
10
19
1
๐‘† 2 : โˆ’๐‘“ฬ‚๐‘—โˆ’1 โˆ’ 6๐‘“ฬ‚๐‘—+1 โˆ’ 3 ๐‘“ฬ‚๐‘—+3 = โˆ’ 3 ๐‘“๐‘— โˆ’ 3 ๐‘“๐‘—+1 โˆ’ 3 ๐‘“๐‘—+2
(3.37)
2
2
2
2
2
2
All three schemes above are a 5th order. According to the idea of the WENO scheme, a
new 7th order scheme is obtained by a linear combination of all stencils with a specific
3
33
7
weight assigned to each one of them. Consider ๐‘ 0 = 13 , ๐‘ 1 = 52 , and ๐‘ 2 = 52 are the
weights assigned to the stencils ๐‘† 0 , ๐‘† 1 , ๐‘Ž๐‘›๐‘‘ ๐‘† 2 respectively. In addition, for consistency
of the scheme, the sum of these weights should be equal to one. Hence, from the
๐‘† = ๐‘ 0 ๐‘† 0 + ๐‘ 1 ๐‘† 1 +๐‘ 2 ๐‘† 2 ,
combination
the final scheme for the positive primitive function ๐ป + can be written as follows:
3
๐‘“ฬ‚ 3
13 ๐‘—โˆ’2
4
8
1
5
239
81
7
โˆ’ 13 ๐‘“ฬ‚๐‘—โˆ’1 โˆ’ 2๐‘“ฬ‚๐‘—+1 โˆ’ 13 ๐‘“ฬ‚๐‘—+3 = 39 ๐‘“๐‘—โˆ’2 + 12 ๐‘“๐‘—โˆ’1 โˆ’ 156 ๐‘“๐‘— โˆ’ 52 ๐‘“๐‘—+1 โˆ’ 156 ๐‘“๐‘—+2
2
2
(3.38)
2
For the negative primitive function ๐ป โˆ’ , the formula is similar. It can be verified that the
scheme above has a 7th order by using the Taylor expansion for each term. In addition,
the numerical results in chapter 4 show the scheme has 7th order with high resolution.
3.2.2 Boundary points schemes
Special 7th order schemes are constructed for boundary the points as follows:
Point 0,
๐‘“ฬ‚๐‘—โˆ’1 =
2
363
617
853
2341
667
43
1
๐‘“๐‘— โˆ’
๐‘“๐‘—+1 +
๐‘“๐‘—+2 โˆ’
๐‘“๐‘—+3 +
๐‘“๐‘—+4 โˆ’ ๐‘“๐‘—+5 + ๐‘“๐‘—+6
140
140
140
420
210
42
7
28
Point 1,
1
223
197
153
241
37
1
๐‘“ฬ‚๐‘—โˆ’1 = ๐‘“๐‘—โˆ’1 +
๐‘“๐‘— โˆ’
๐‘“๐‘—+1 +
๐‘“๐‘—+2 โˆ’
๐‘“๐‘—+3 +
๐‘“๐‘—+4 โˆ’
๐‘“
7
140
140
140
420
210
42 ๐‘—+5
2
Point 2,
๐‘“ฬ‚๐‘—โˆ’1 = โˆ’
2
1
13
153
241
109
31
1
๐‘“๐‘—โˆ’2 + ๐‘“๐‘—โˆ’1 +
๐‘“๐‘— โˆ’
๐‘“๐‘—+1 +
๐‘“๐‘—+2 โˆ’
๐‘“๐‘—+3 +
๐‘“
42
42
140
420
140
420
105 ๐‘—+4
Point N-1,
๐‘“ฬ‚๐‘—+1 = โˆ’
2
1
37
241
153
197
223
1
๐‘“๐‘—โˆ’5 +
๐‘“๐‘—โˆ’4 โˆ’
๐‘“๐‘—โˆ’3 +
๐‘“๐‘—โˆ’2 โˆ’
๐‘“๐‘—โˆ’1 +
๐‘“๐‘— + ๐‘“๐‘—+1
42
210
420
140
140
140
7
Point N,
๐‘“ฬ‚๐‘—+1 =
2
1
43
667
2341
853
617
363
๐‘“๐‘—โˆ’6 โˆ’ ๐‘“๐‘—โˆ’5 +
๐‘“๐‘—โˆ’4 โˆ’
๐‘“๐‘—โˆ’3 +
๐‘“๐‘—โˆ’2 โˆ’
๐‘“๐‘—โˆ’1 +
๐‘“
7
42
210
420
140
140
140 ๐‘—
3.3. Dispersion and Dissipation Analysis
The dispersion and dissipation errors are efficiently quantified using the Fourier
analysis by R. Vichnevetsky (1982) and J. Anderson (1995). Hence, the resolution and
diffusion properties of the WUCS scheme are provided by the Fourier analysis and
compared with the WENO scheme and WCS. Since the Fourier analysis requires
periodicity, the dependent variables are considered to be periodic over the domain [0 , L]
๐ฟ
of independent variables. ๐‘“1 = ๐‘“๐‘+1 ๐‘Ž๐‘›๐‘‘ โ„Ž = ๐‘ . The dependent variables can be written
in terms of the Fourier coefficients as follows:
๐‘
๐‘“(๐‘ฅ) = โˆ‘ 2
๐‘
๐‘˜=โˆ’
2
๐‘“ฬ‚๐‘˜ ๐‘’
2๐œ‹๐‘–๐‘˜๐‘ฅ
๐ฟ
(3.39)
Where ๐‘– = โˆšโˆ’1 and ๐‘ฅ โˆˆ [0, ๐ฟ]. The Fourier coefficients satisfy that ๐‘“ฬ‚0 = ๐‘“ฬ…ฬ‚0 and
29
๐‘
๐‘“ฬ‚๐‘˜ = ๐‘“ฬ‚โˆ’๐‘˜ for 1 โ‰ค k โ‰ค 2 because the dependent variables are real values. For programing
convenience, a scaled wave number ๐‘ค =
2๐œ‹๐‘˜โ„Ž
๐ฟ
=
2๐œ‹๐‘˜
๐‘
๐‘ฅ
and a scaled coordinate ๐‘  = โ„Ž are
introduced. Hence, (3.39) becomes
๐‘
๐‘“(๐‘ฅ) = ๐‘“(๐‘ โ„Ž) = โˆ‘ 2
๐‘˜=โˆ’
๐‘
2
๐‘“ฬ‚๐‘˜ ๐‘’ ๐‘–๐‘ค๐‘ 
(3.40)
The domain of the scaled wave number w is [0, ๐œ‹]. The first derivative of (3.40) can be
computed with respect of ๐‘  as follows:
โ„Ž๐‘“โ€ฒ(๐‘ โ„Ž) = โˆ‘
๐‘
2
๐‘˜=โˆ’
๐‘
2
๐‘–๐‘ค๐‘“ฬ‚๐‘˜ ๐‘’ ๐‘–๐‘ค๐‘ 
(3.41)
When comparing the Fourier coefficients of the derivative obtained from the differencing
scheme(๐‘“ฬ‚ โ€ฒ ๐‘˜ )๐‘“๐‘‘ with the exact Fourier coefficients, ๐‘“ฬ‚ โ€ฒ ๐‘˜ , the differencing errors can be
obtained. In general, a finite difference scheme corresponds to a function of w, ๐‘คโ€ฒ(๐‘ค),
which is called the effective wave number. The straight line ๐‘ค โ€ฒ (๐‘ค) = ๐‘ค represents the
exact differentiation. The real part of the effective wave number (๐‘ค โ€ฒ ) quantifies the
dissipation error while the dispersion error, which represents the resolution of the scheme,
can be quantified by the imaginary part of ๐‘ค โ€ฒ . The dissipation errors constitute the
amplification introduced by the scheme while the dispersion errors represent the waves
for different wave numbers traveling at different velocities. The dispersion and
dissipation of the WENO scheme, WCS, and WUCS are discussed in the following
subsections at each stencil (for non-smooth areas) and at the combinations of all stencils
(for smooth areas).
30
3.3.1 Dispersion and dissipation analysis for the left stencils (๐‘† 0 )
One problem with the WCS scheme (Jiang et al., 2001) is it has a negative dissipation for
the left candidate, and this problem is treated when constructing the WUCS scheme. The
scheme for the left stencil of WUCS is given in (3.35) as follows:
๐‘“ฬ‚๐‘—โˆ’3 + 2๐‘“ฬ‚๐‘—โˆ’1 +
2
2
1
1
19
10
๐‘“ฬ‚๐‘—+1 = ๐‘“๐‘—โˆ’2 + ๐‘“๐‘—โˆ’1 +
๐‘“
3
9
9
9 ๐‘—
2
First, the above scheme can be rewritten in terms of H when substituting (3.7) and (3.8)
in (3.35) as follows:
โ„Ž(๐ปโ€ฒ
3
๐‘—โˆ’
2
+ 2๐ปโ€ฒ
1
๐‘—โˆ’
2
+
1
1
19
10
๐ปโ€ฒ 1 ) = (๐ป 3 โˆ’ ๐ป 5 ) + (๐ป 1 โˆ’ ๐ป 3 ) + (๐ป 1 โˆ’ ๐ป 1 )
๐‘—โˆ’
๐‘—โˆ’
๐‘—+
๐‘—โˆ’
๐‘—โˆ’
3 ๐‘—+2
9 ๐‘—โˆ’2
9
9
2
2
2
2
2
1
For simplification, letting j = 0 and shifting the scheme by โˆ’ 2 gives
1
1
โ„Ž(๐ปโ€ฒโˆ’2 + 2๐ปโ€ฒโˆ’1 + 3 ๐ปโ€ฒ0 ) = 9 (๐ปโˆ’2 โˆ’ ๐ปโˆ’3 ) +
19
(๐ปโˆ’1
9
โˆ’ ๐ปโˆ’2 ) +
10
(๐ป0
9
โˆ’ ๐ป1 )
(3.42)
From (3.40) and (3.41), we have
๐‘
๐ป๐‘— = โˆ‘ 2
ฬ‚ ๐‘˜ ๐‘’๐‘–๐‘ค๐‘—
๐ป
(3.43)
ฬ‚ ๐‘˜ ๐‘’๐‘–๐‘ค๐‘—
๐‘–๐‘ค๐ป
(3.44)
๐‘
๐‘˜=โˆ’ 2
๐‘
๐ปโ€ฒ๐‘— = โˆ‘ 2
๐‘
๐‘˜=โˆ’ 2
Substituting (3.43) and (3.44) in (3.42) results in
๐‘
2
๐‘
2
๐‘
๐‘˜=โˆ’
2
๐‘
๐‘˜=โˆ’
2
๐‘–๐‘ค
1
19
10
ฬ‚๐‘˜ (๐‘–๐‘ค ๐‘’ โˆ’2๐‘–๐‘ค + 2๐‘–๐‘ค ๐‘’ โˆ’๐‘–๐‘ค +
ฬ‚๐‘˜ ( (๐‘’ โˆ’2๐‘–๐‘ค โˆ’ ๐‘’ โˆ’3๐‘–๐‘ค ) + (๐‘’ โˆ’๐‘–๐‘ค โˆ’ ๐‘’ โˆ’2๐‘–๐‘ค ) + (1 โˆ’ ๐‘’ โˆ’๐‘–๐‘ค ))
h โˆ‘ ๐ป
)= โˆ‘ ๐ป
3
9
9
9
๐‘
2
ฬ‚๐‘˜ [(๐‘–๐‘ค ๐‘’ โˆ’2๐‘–๐‘ค + 2๐‘–๐‘ค ๐‘’ โˆ’๐‘–๐‘ค +
h โˆ‘ ๐ป
๐‘
๐‘˜=โˆ’
2
๐‘–๐‘ค
1
19
10
) โˆ’ ( (๐‘’ โˆ’2๐‘–๐‘ค โˆ’ ๐‘’ โˆ’3๐‘–๐‘ค ) + (๐‘’ โˆ’๐‘–๐‘ค โˆ’ ๐‘’ โˆ’2๐‘–๐‘ค ) + (1 โˆ’ ๐‘’ โˆ’๐‘–๐‘ค ))] = 0
3
9
9
9
31
๐‘
2
[(๐‘–๐‘ค ๐‘’ โˆ’2๐‘–๐‘ค + 2๐‘–๐‘ค ๐‘’ โˆ’๐‘–๐‘ค +
๐‘–๐‘ค
1
19
10
ฬ‚๐‘˜ = 0
) โˆ’ ( (๐‘’ โˆ’2๐‘–๐‘ค โˆ’ ๐‘’ โˆ’3๐‘–๐‘ค ) + (๐‘’ โˆ’๐‘–๐‘ค โˆ’ ๐‘’ โˆ’2๐‘–๐‘ค ) +
(1 โˆ’ ๐‘’ โˆ’๐‘–๐‘ค ))] h โˆ‘ ๐ป
3
9
9
9
๐‘˜=โˆ’
[(๐‘–๐‘ค ๐‘’ โˆ’2๐‘–๐‘ค + 2๐‘–๐‘ค ๐‘’ โˆ’๐‘–๐‘ค +
๐‘
2
๐‘–๐‘ค
1
19 โˆ’๐‘–๐‘ค
10
) โˆ’ ( (๐‘’ โˆ’2๐‘–๐‘ค โˆ’ ๐‘’ โˆ’3๐‘–๐‘ค ) +
(๐‘’
โˆ’ ๐‘’ โˆ’2๐‘–๐‘ค ) + (1 โˆ’ ๐‘’ โˆ’๐‘–๐‘ค ))] = 0
3
9
9
9
(๐‘–๐‘ค ๐‘’ โˆ’2๐‘–๐‘ค + 2๐‘–๐‘ค ๐‘’ โˆ’๐‘–๐‘ค +
๐‘–๐‘ค
1
19 โˆ’๐‘–๐‘ค
10
) = (๐‘’ โˆ’2๐‘–๐‘ค โˆ’ ๐‘’ โˆ’3๐‘–๐‘ค ) +
(๐‘’
โˆ’ ๐‘’ โˆ’2๐‘–๐‘ค ) +
(1 โˆ’ ๐‘’ โˆ’๐‘–๐‘ค )
3
9
9
9
Using Eulerโ€™s formula, ๐‘’ ๐‘–๐‘ค = ๐ถ๐‘œ๐‘ [๐‘ค] + ๐‘– ๐‘†๐‘–๐‘›[๐‘ค], results in
2โ„Ž๐‘ค๐‘†๐‘–๐‘›[๐‘ค] + โ„Ž๐‘ค๐‘†๐‘–๐‘›[2๐‘ค] + ๐‘–(
=
โ„Ž๐‘ค
+ 2โ„Ž๐‘ค๐ถ๐‘œ๐‘ [๐‘ค] + โ„Ž๐‘ค๐ถ๐‘œ๐‘ [2๐‘ค])
3
10
1
1
+ ๐ถ๐‘œ๐‘ [๐‘ค] โˆ’ 2๐ถ๐‘œ๐‘ [2๐‘ค] โˆ’ ๐ถ๐‘œ๐‘ [3๐‘ค] + ๐‘–(โˆ’๐‘†๐‘–๐‘›[๐‘ค] + 2๐‘†๐‘–๐‘›[2๐‘ค] + ๐‘†๐‘–๐‘›[3๐‘ค])
9
9
9
โ„Ž๐‘ค ๐‘ ๐‘–๐‘›(2๐‘ค) + 2โ„Ž๐‘ค ๐‘ ๐‘–๐‘›(๐‘ค) + ๐‘– (โ„Ž๐‘ค ๐‘๐‘œ๐‘ (2๐‘ค) + 2โ„Ž๐‘ค ๐ถ๐‘œ๐‘ [๐‘ค] +
โ„Ž๐‘ค
)
3
1
10
1
= โˆ’ ๐‘๐‘œ๐‘ (3๐‘ค) โˆ’ 2 ๐‘๐‘œ๐‘ (2๐‘ค) +
+ ๐‘– ( ๐‘ ๐‘–๐‘›(3๐‘ค) + 2 ๐‘ ๐‘–๐‘›(2๐‘ค) โˆ’ ๐‘ ๐‘–๐‘›(๐‘ค))
9
9
9
๐‘ค=
โˆ’10๐‘– โˆ’ 9๐‘–๐ถ๐‘œ๐‘ [๐‘ค] + 18๐‘–๐ถ๐‘œ๐‘ [2๐‘ค] + ๐‘–๐ถ๐‘œ๐‘ [3๐‘ค] โˆ’ 9๐‘†๐‘–๐‘›[๐‘ค] + 18๐‘†๐‘–๐‘›[2๐‘ค] + ๐‘†๐‘–๐‘›[3๐‘ค]
3โ„Ž(1 + 6๐ถ๐‘œ๐‘ [๐‘ค] + 3๐ถ๐‘œ๐‘ [2๐‘ค] โˆ’ 6๐‘–๐‘†๐‘–๐‘›[๐‘ค] โˆ’ 3๐‘–๐‘†๐‘–๐‘›[2๐‘ค])
๐‘ค=
โˆ’9i+8i๐ถ๐‘œ๐‘ [๐‘ค]+i๐ถ๐‘œ๐‘ [2๐‘ค]+28๐‘†๐‘–๐‘›[๐‘ค]+๐‘†๐‘–๐‘›[2๐‘ค]
6โ„Ž(3+2๐ถ๐‘œ๐‘ [๐‘ค]โˆ’i๐‘†๐‘–๐‘›[๐‘ค])
Letting โ„Ž = 1 gives
๐‘ค=
โˆ’9๐‘–+8๐‘–๐ถ๐‘œ๐‘ [๐‘ค]+๐‘–๐ถ๐‘œ๐‘ [2๐‘ค]+28๐‘†๐‘–๐‘›[๐‘ค]+๐‘†๐‘–๐‘›[2๐‘ค]
6(3+2๐ถ๐‘œ๐‘ [๐‘ค]โˆ’๐‘–๐‘†๐‘–๐‘›[๐‘ค])
(3.45)
w in (3.45) represents the wave number for the left stencil of WUCS, and it is denoted
by ๐‘ค(๐‘Š๐‘ˆ๐ถ๐‘†) .
Hence,
๐‘ค(๐‘Š๐‘ˆ๐ถ๐‘†) =
โˆ’9๐‘–+8๐‘–๐ถ๐‘œ๐‘ [๐‘ค]+๐‘–๐ถ๐‘œ๐‘ [2๐‘ค]+28๐‘†๐‘–๐‘›[๐‘ค]+๐‘†๐‘–๐‘›[2๐‘ค]
6(3+2๐ถ๐‘œ๐‘ [๐‘ค]โˆ’๐‘–๐‘†๐‘–๐‘›[๐‘ค])
32
Similarly, the wave numbers for the left stencils of WCS and the WENO scheme can be
computed as follows:
๐‘ค(๐‘Š๐ถ๐‘†) =
2๐‘–โˆ’2๐‘–๐ถ๐‘œ๐‘ [๐‘ค]+3๐‘†๐‘–๐‘›[๐‘ค]
2+๐ถ๐‘œ๐‘ [๐‘ค]+๐‘– ๐‘†๐‘–๐‘›[๐‘ค]
and
๐‘Š(๐‘Š๐ธ๐‘๐‘‚) =
๐‘–(โˆ’11+18๐ถ๐‘œ๐‘ [๐‘ค]โˆ’9๐ถ๐‘œ๐‘ [2๐‘ค]+2๐ถ๐‘œ๐‘ [3๐‘ค])+18๐‘†๐‘–๐‘›[๐‘ค]โˆ’9๐‘†๐‘–๐‘›[2๐‘ค]+2๐‘†๐‘–๐‘›[3๐‘ค]
6
Now, the dispersion and dissipation errors can be found as follows:
Effective Wave Number (๐‘ค โ€ฒ ) = Dissipation + ๐‘–* Dispersion
Effective Wave Number (๐‘คโ€ฒ) = ๐‘–๐‘ค
let
so
๐‘ค = ๐‘Ž + ๐‘–๐‘
๐‘ค โ€ฒ = ๐‘–(๐‘Ž + ๐‘–๐‘) = ๐‘–๐‘Ž โˆ’ ๐‘ = โˆ’๐‘ + ๐‘–๐‘Ž
The Dispersion = ๐‘Ž = Re (w)
(3.46)
The Dissipation = โˆ’b = โˆ’ Im (w)
(3.47)
The dispersion errors of WUCS, WCS, and the WENO scheme are
Re (๐‘ค(๐‘Š๐‘ˆ๐ถ๐‘†) ) = Re(
Re(๐‘ค(WCS) ) = Re(
=
6(3+2๐ถ๐‘œ๐‘ [๐‘ค]โˆ’i๐‘†๐‘–๐‘›[๐‘ค])
),
2iโˆ’2iCos[๐‘ค]+3Sin[๐‘ค]
2+๐ถ๐‘œ๐‘ [๐‘ค]+๐‘– ๐‘†๐‘–๐‘›[๐‘ค]
(8+Cos[๐‘ค])Sin[๐‘ค]
๐‘…๐‘’(๐‘Š(๐‘Š๐ธ๐‘๐‘‚) ) = ๐‘…๐‘’(
=
โˆ’9i+8i๐ถ๐‘œ๐‘ [๐‘ค]+i๐ถ๐‘œ๐‘ [2๐‘ค]+28๐‘†๐‘–๐‘›[๐‘ค]+๐‘†๐‘–๐‘›[2๐‘ค]
5+4๐ถ๐‘œ๐‘ [๐‘ค]
)
, and
i(โˆ’11+18๐ถ๐‘œ๐‘ [๐‘ค]โˆ’9๐ถ๐‘œ๐‘ [2๐‘ค]+2๐ถ๐‘œ๐‘ [3๐‘ค])+18๐‘†๐‘–๐‘›[๐‘ค]โˆ’9๐‘†๐‘–๐‘›[2๐‘ค]+2๐‘†๐‘–๐‘›[3๐‘ค]
6
18๐‘†๐‘–๐‘›[๐‘ค]โˆ’9๐‘†๐‘–๐‘›[2๐‘ค]+2๐‘†๐‘–๐‘›[3๐‘ค]
6
33
)
3
1
= 3๐‘†๐‘–๐‘›[๐‘ค] โˆ’ 2 ๐‘†๐‘–๐‘›[2๐‘ค] + 3 ๐‘†๐‘–๐‘›[3๐‘ค]
As shown in Figure 3.5, the WENO scheme has the biggest dispersion errors among the
three schemes, so it has the lowest resolution. Both WUCS and WCS have high resolution
with close dispersion errors.
Figure 3.5. The dispersion in the left stencils of
WUCS, WCS, and the WENO scheme.
The dissipation errors are
โˆ’9i+8i๐ถ๐‘œ๐‘ [๐‘ค]+i๐ถ๐‘œ๐‘ [2๐‘ค]+28๐‘†๐‘–๐‘›[๐‘ค]+๐‘†๐‘–๐‘›[2๐‘ค]
),
6(3+2๐ถ๐‘œ๐‘ [๐‘ค]โˆ’i๐‘†๐‘–๐‘›[๐‘ค])
โˆ’ Im (๐‘ค(๐‘Š๐‘ˆ๐ถ๐‘†) ) = โˆ’Im (
โˆ’Im(๐‘ค(WCS) ) = โˆ’Im (
2๐‘–โˆ’2๐‘–Cos[๐‘ค]+3Sin[๐‘ค]
)
2+๐ถ๐‘œ๐‘ [๐‘ค]+๐‘– ๐‘†๐‘–๐‘›[๐‘ค]
๐‘ค 4
2
4Sin[ ]
= โˆ’ 5+4๐ถ๐‘œ๐‘ [๐‘ค] , and
๐‘–(โˆ’11+18๐ถ๐‘œ๐‘ [๐‘ค]โˆ’9๐ถ๐‘œ๐‘ [2๐‘ค]+2๐ถ๐‘œ๐‘ [3๐‘ค])+18๐‘†๐‘–๐‘›[๐‘ค]โˆ’9๐‘†๐‘–๐‘›[2๐‘ค]+2๐‘†๐‘–๐‘›[3๐‘ค]
)
6
โˆ’ Im (๐‘Š(๐‘Š๐ธ๐‘๐‘‚) ) = โˆ’ Im(
=โˆ’(
=
11
6
(โˆ’11+18๐ถ๐‘œ๐‘ [๐‘ค]โˆ’9๐ถ๐‘œ๐‘ [2๐‘ค]+2๐ถ๐‘œ๐‘ [3๐‘ค])
)
6
3
1
2
3
โˆ’ 3๐ถ๐‘œ๐‘ [๐‘ค] + ๐ถ๐‘œ๐‘ [2๐‘ค] โˆ’ ๐ถ๐‘œ๐‘ [3๐‘ค]
34
Figure 3.6 illustrates that WUCS has a positive dissipation while WCS has a negative
dissipation, and the WENO scheme fluctuates over the wave number range. Also, the
dissipation errors in WUCS are the lowest compared to the WENO scheme and WCS.
Figure 3.6. Dissipation in the left stencils of
WUCS, WCS, and the WENO scheme.
3.3.2 Dispersion and dissipation analysis for the center stencils (๐‘† 1 )
The scheme for the center stencil of WUCS is given in (3.36) as follows:
โˆ’๐‘“ฬ‚๐‘—โˆ’1 โˆ’ 2๐‘“ฬ‚๐‘—+1 โˆ’
2
2
1
1
19
10
๐‘“ฬ‚๐‘—+3 = โˆ’ ๐‘“๐‘—โˆ’1 โˆ’ ๐‘“๐‘— โˆ’ ๐‘“๐‘—+1
3
9
9
9
2
Applying the same procedure and analysis from section 3.3.1 results in
1
19
10
1
โ„Ž(โˆ’2๐‘–๐‘ค โˆ’ ๐‘–๐‘’ โˆ’๐‘–๐‘ค ๐‘ค โˆ’ ๐‘–๐‘’ ๐‘–๐‘ค ๐‘ค) = โˆ’ (1 โˆ’ ๐‘’ โˆ’๐‘–๐‘ค ) โˆ’
(โˆ’1 + ๐‘’ ๐‘–๐‘ค ) + (โˆ’๐‘’ โˆ’๐‘–๐‘ค + ๐‘’ โˆ’2๐‘–๐‘ค )
3
9
9
9
By letting โ„Ž = 1 and using Eulerโ€™s formula, we arrive at
4
2
8
1
28
1
๐‘–(โˆ’2๐‘ค โˆ’ ๐‘ค๐ถ๐‘œ๐‘ [๐‘ค]) โˆ’ โ„Ž๐‘ค๐‘†๐‘–๐‘›[๐‘ค] = โˆ’1 + ๐ถ๐‘œ๐‘ [๐‘ค] + ๐ถ๐‘œ๐‘ [2๐‘ค] + ๐‘–(โˆ’ ๐‘†๐‘–๐‘›[๐‘ค] โˆ’ ๐‘†๐‘–๐‘›[2๐‘ค])๐‘ค
3
3
9
9
9
9
35
๐‘ค=
โˆ’9๐‘– + 8๐‘–๐ถ๐‘œ๐‘ [๐‘ค] + ๐‘–๐ถ๐‘œ๐‘ [2๐‘ค] + 28๐‘†๐‘–๐‘›[๐‘ค] + ๐‘†๐‘–๐‘›[2๐‘ค]
6(3 + 2๐ถ๐‘œ๐‘ [๐‘ค] โˆ’ ๐‘–๐‘†๐‘–๐‘›[๐‘ค])
Hence,
๐‘ค(๐‘Š๐‘ˆ๐ถ๐‘†) =
โˆ’9i + 8i๐ถ๐‘œ๐‘ [๐‘ค] + i๐ถ๐‘œ๐‘ [2๐‘ค] + 28๐‘†๐‘–๐‘›[๐‘ค] + ๐‘†๐‘–๐‘›[2๐‘ค]
6(3 + 2๐ถ๐‘œ๐‘ [๐‘ค] โˆ’ i๐‘†๐‘–๐‘›[๐‘ค])
Similarly, the wave numbers for the center stencils of WCS and the WENO scheme are
๐‘ค(WCS) =
๐‘Š(๐‘Š๐ธ๐‘๐‘‚) =
3Sin[๐‘ค]
2+Cos[๐‘ค]
and
i(โˆ’3+4Cos[๐‘ค]โˆ’Cos[2๐‘ค])+8Sin[๐‘ค]โˆ’Sin[2๐‘ค]
6
The dispersion errors of WUCS, WCS, and WENO are
โˆ’9i+8i๐ถ๐‘œ๐‘ [๐‘ค]+i๐ถ๐‘œ๐‘ [2๐‘ค]+28๐‘†๐‘–๐‘›[๐‘ค]+๐‘†๐‘–๐‘›[2๐‘ค]
Re (๐‘ค(๐‘Š๐‘ˆ๐ถ๐‘†) ) = Re (
=
189Sin[๐‘ค]+54Sin[2๐‘ค]+Sin[3๐‘ค]
6(23+24Cos[๐‘ค]+3Cos[2๐‘ค])
Re(๐‘ค(WCS) ) = Re(
๐‘…๐‘’(๐‘Š(๐‘Š๐ธ๐‘๐‘‚) ) = ๐‘…๐‘’(
=
4
)
6(3+2๐ถ๐‘œ๐‘ [๐‘ค]โˆ’i๐‘†๐‘–๐‘›[๐‘ค])
3Sin[๐‘ค]
2+Cos[๐‘ค]
)=
3Sin[๐‘ค]
2+Cos[๐‘ค]
, and
๐‘–(โˆ’3+4Cos[๐‘ค]โˆ’Cos[2๐‘ค])+8Sin[๐‘ค]โˆ’Sin[2๐‘ค]
6
)
8Sin[๐‘ค]โˆ’Sin[2๐‘ค]
6
1
= 3 Sin[๐‘ค] โˆ’ 6 Sin[2๐‘ค]
As illustrated in Figure 3.7, the resolution of WCS is better than the resolution of the
WENO scheme, and WUCS is the best among all of them because it is of the lowest
dispersion errors.
36
Figure 3.7. The dispersion in the center stencils of
WUCS, WCS, and the WENO scheme.
The dissipation errors are
189Sin[๐‘ค]+54Sin[2๐‘ค]+Sin[3๐‘ค]
)
6(23+24Cos[๐‘ค]+3Cos[2๐‘ค])
โˆ’ Im (๐‘ค(๐‘Š๐‘ˆ๐ถ๐‘†) ) = โˆ’ Im (
๐‘ค
16Sin[ ]6
2
= 69+72Cos[๐‘ค]+9Cos[2๐‘ค]
,
3Sin[๐‘ค]
โˆ’Im(๐‘ค(WCS) ) = โˆ’Im (2+Cos[๐‘ค]) = 0 , and
๐‘–(โˆ’3 + 4Cos[๐‘ค] โˆ’ Cos[2๐‘ค]) + 8Sin[๐‘ค] โˆ’ Sin[2๐‘ค]
โˆ’ Im (๐‘Š(๐‘Š๐ธ๐‘๐‘‚) ) = โˆ’ Im(
=โˆ’(
1
)
6
(โˆ’3+4Cos[๐‘ค]โˆ’Cos[2๐‘ค])
2
6
)
1
= 2 โˆ’ 3 Cos[๐‘ค] + 6 Cos[2๐‘ค]
Figure 3.8 represents that both the WENO scheme and WUCS have a positive dissipation
while WCS has no dissipation. Also, the dissipation errors in WUCS are much fewer than
the dissipation errors in the WENO scheme.
37
Figure 3.8. The dissipation in the center stencils of
WUCS, WCS, and the WENO scheme.
3.3.3 Dispersion and dissipation analysis for the right stencils (๐‘† 2 )
The scheme for the right stencil of WUCS is given in (3.37) as follows:
โˆ’๐‘“ฬ‚๐‘—โˆ’1 โˆ’ 6๐‘“ฬ‚๐‘—+1 โˆ’ 3 ๐‘“ฬ‚๐‘—+3 = โˆ’
2
2
2
10
19
1
๐‘“๐‘— โˆ’ ๐‘“๐‘—+1 โˆ’ ๐‘“๐‘—+2
3
3
3
Applying the process in section 3.3.1 results in
โ„Ž(โˆ’6๐‘–w โˆ’ ๐‘–๐‘’ โˆ’๐‘–๐‘ค w โˆ’ 3๐‘–๐‘’ ๐‘–๐‘ค w) == โˆ’
10
19
1
(1 โˆ’ ๐‘’ โˆ’๐‘–๐‘ค ) โˆ’
(โˆ’1 + ๐‘’ ๐‘–๐‘ค ) + (๐‘’ ๐‘–๐‘ค โˆ’ ๐‘’ 2๐‘–๐‘ค )
3
3
3
8
1
28
1
๐‘–(โˆ’6โ„Žw โˆ’ 4โ„ŽwCos[๐‘ค]) + 2โ„ŽwSin[๐‘ค] == 3 โˆ’ Cos[๐‘ค] โˆ’ Cos[2๐‘ค] + ๐‘–(โˆ’ Sin[๐‘ค] โˆ’ Sin[2๐‘ค])
3
3
3
3
Letting โ„Ž = 1 and using Eulerโ€™s formula provides
๐‘ค=
๐‘ค=
9๐‘–โˆ’8๐‘–Cos[๐‘ค]โˆ’๐‘–Cos[2๐‘ค]+28Sin[๐‘ค]+Sin[2๐‘ค]
6(3+2Cos[๐‘ค]+๐‘–Sin[๐‘ค])
9๐‘–โˆ’8๐‘–Cos[๐‘ค]โˆ’๐‘–Cos[2๐‘ค]+28Sin[๐‘ค]+Sin[2๐‘ค]
18+12Cos[๐‘ค]+6๐‘–Sin[๐‘ค]
38
Hence,
๐‘ค(๐‘Š๐‘ˆ๐ถ๐‘†) =
9๐‘–โˆ’8๐‘–Cos[๐‘ค]โˆ’๐‘–Cos[2๐‘ค]+28Sin[๐‘ค]+Sin[2๐‘ค]
18+12Cos[๐‘ค]+6๐‘–Sin[๐‘ค]
Similarly, the wave numbers for the right stencils of the WENO scheme and WCS are
๐‘ค(๐‘Š๐ถ๐‘†) =
5๐‘–โˆ’4๐‘–๐ถ๐‘œ๐‘ [๐‘ค]โˆ’๐‘–๐ถ๐‘œ๐‘ [2๐‘ค]+4๐‘†๐‘–๐‘›[๐‘ค]+๐‘†๐‘–๐‘›[2๐‘ค]
2(1+2๐ถ๐‘œ๐‘ [๐‘ค]+2๐‘–๐‘†๐‘–๐‘›[๐‘ค])
๐‘Š(๐‘Š๐ธ๐‘๐‘‚) =
and
๐‘–(3โˆ’4๐ถ๐‘œ๐‘ [๐‘ค]+๐ถ๐‘œ๐‘ [2๐‘ค])+8๐‘†๐‘–๐‘›[๐‘ค]โˆ’๐‘†๐‘–๐‘›[2๐‘ค]
6
The dispersion errors of WUCS, WCS, and the WENO scheme are
9๐‘–โˆ’8๐‘–Cos[๐‘ค]โˆ’๐‘–Cos[2๐‘ค]+28Sin[๐‘ค]+Sin[2๐‘ค]
Re (๐‘ค(๐‘Š๐‘ˆ๐ถ๐‘†) ) = Re (
Re(๐‘ค(WCS) ) = Re(
=
5๐‘–โˆ’4๐‘–Cos[๐‘ค]โˆ’๐‘–Cos[2๐‘ค]+4Sin[๐‘ค]+Sin[2๐‘ค]
2(1+2Cos[๐‘ค]+2๐‘–Sin[๐‘ค])
(8+Cos[๐‘ค])Sin[๐‘ค]
5+4๐ถ๐‘œ๐‘ [๐‘ค]
๐‘…๐‘’(๐‘Š(๐‘Š๐ธ๐‘๐‘‚) ) = ๐‘…๐‘’(
=
4
18+12Cos[๐‘ค]+6๐‘–Sin[๐‘ค]
),
)
, and
๐‘–(3โˆ’4Cos[๐‘ค]+Cos[2๐‘ค])+8Sin[๐‘ค]โˆ’Sin[2๐‘ค]
6
)
8Sin[๐‘ค]โˆ’Sin[2๐‘ค]
6
1
= 3 Sin[๐‘ค] โˆ’ 6 Sin[2๐‘ค]
It can be clearly seen from Figure 3.9 that both WUCS and WCS have high resolution.
Also, the WENO scheme has the lowest resolution among the three schemes because it
has the biggest dispersion errors.
39
Figure 3.9. The dispersion in the right stencils of
WUCS, WCS, and the WENO scheme.
The dissipation errors are
9๐‘–โˆ’8๐‘–Cos[๐‘ค]โˆ’๐‘–Cos[2๐‘ค]+28Sin[๐‘ค]+Sin[2๐‘ค]
),
18+12Cos[๐‘ค]+6๐‘–Sin[๐‘ค]
โˆ’ Im (๐‘ค(๐‘Š๐‘ˆ๐ถ๐‘†) ) = โˆ’ Im (
โˆ’Im(๐‘ค(WCS) ) = โˆ’Im (
5๐‘–โˆ’4๐‘–Cos[๐‘ค]โˆ’๐‘–Cos[2๐‘ค]+4Sin[๐‘ค]+Sin[2๐‘ค]
2(1+2Cos[๐‘ค]+2๐‘–Sin[๐‘ค])
)
๐‘ค 4
2
4Sin[ ]
= 5+4๐ถ๐‘œ๐‘ [๐‘ค] , and
โˆ’ Im (๐‘Š(๐‘Š๐ธ๐‘๐‘‚) ) = โˆ’ Im(
=โˆ’(
๐‘–(3โˆ’4Cos[๐‘ค]+Cos[2๐‘ค])+8Sin[๐‘ค]โˆ’Sin[2๐‘ค]
6
(3โˆ’4Cos[๐‘ค]+Cos[2๐‘ค])
1
6
2
)
)
1
= โˆ’ 2 + 3 Cos[๐‘ค] โˆ’ 6 Cos[2๐‘ค]
Figure 3.10 illustrates that both the WENO scheme and WUCS have a negative
dissipation while WCS has a positive dissipation. Also, the dissipation errors in WUCS
are the lowest compared to the WENO scheme and WCS.
40
Figure 3.10. The dissipation in the right stencils of
WUCS, WCS, and the WENO scheme.
3.3.4 Dispersion and dissipation analysis for the overall schemes
For smooth regions, the combination of all schemes from all stencils is used to get a high
order scheme. The 7th order WUCS scheme is given in (3.38) as follows:
3
4
8
๐‘“ฬ‚๐‘—โˆ’3 โˆ’ ๐‘“ฬ‚๐‘—โˆ’1 โˆ’ 2๐‘“ฬ‚๐‘—+1 โˆ’
๐‘“ฬ‚ 3
13
13
13 ๐‘—+2
2
2
2
=
1
5
239
81
7
๐‘“๐‘—โˆ’2 +
๐‘“๐‘—โˆ’1 โˆ’
๐‘“๐‘— โˆ’ ๐‘“๐‘—+1 โˆ’
๐‘“
39
12
156
52
156 ๐‘—+2
Now, repeating the process from section 3.3.1 gives
๐‘ค=
2๐‘– + 34๐‘–๐ถ๐‘œ๐‘ [๐‘ค] โˆ’ 34๐‘–๐ถ๐‘œ๐‘ [2๐‘ค] โˆ’ 2๐‘–๐ถ๐‘œ๐‘ [3๐‘ค] + 270๐‘†๐‘–๐‘›[๐‘ค] โˆ’ 27๐‘†๐‘–๐‘›[2๐‘ค] โˆ’ 2๐‘†๐‘–๐‘›[3๐‘ค]
6(26 + 12๐ถ๐‘œ๐‘ [๐‘ค] โˆ’ 3๐ถ๐‘œ๐‘ [2๐‘ค] + 4๐‘–๐‘†๐‘–๐‘›[๐‘ค] + 3๐‘–๐‘†๐‘–๐‘›[2๐‘ค])
Hence,
๐‘ค(๐‘Š๐‘ˆ๐ถ๐‘†) =
2๐‘– + 34๐‘–๐ถ๐‘œ๐‘ [๐‘ค] โˆ’ 34๐‘–๐ถ๐‘œ๐‘ [2๐‘ค] โˆ’ 2๐‘–๐ถ๐‘œ๐‘ [3๐‘ค] + 270๐‘†๐‘–๐‘›[๐‘ค] โˆ’ 27๐‘†๐‘–๐‘›[2๐‘ค] โˆ’ 2๐‘†๐‘–๐‘›[3๐‘ค]
6(26 + 12๐ถ๐‘œ๐‘ [๐‘ค] โˆ’ 3๐ถ๐‘œ๐‘ [2๐‘ค] + 4๐‘–๐‘†๐‘–๐‘›[๐‘ค] + 3๐‘–๐‘†๐‘–๐‘›[2๐‘ค])
Similarly, the wave numbers for the WENO scheme and WCS are
41
(14+Cos[๐‘ค])Sin[๐‘ค]
๐‘ค(WCS) =
๐‘Š(๐‘Š๐ธ๐‘๐‘‚) =
1
30
9+6Cos[๐‘ค]
and
(๐‘–(โˆ’10 + 15Cos[๐‘ค] โˆ’ 6Cos[2๐‘ค] + Cos[3๐‘ค]) + 45Sin[๐‘ค] โˆ’ 9Sin[2๐‘ค] + Sin[3๐‘ค])
The dispersion errors of WUCS, WCS, and the WENO scheme are
2๐‘–+34๐‘–๐ถ๐‘œ๐‘ [๐‘ค]โˆ’34๐‘–๐ถ๐‘œ๐‘ [2๐‘ค]โˆ’2๐‘–๐ถ๐‘œ๐‘ [3๐‘ค]+270๐‘†๐‘–๐‘›[๐‘ค]โˆ’27๐‘†๐‘–๐‘›[2๐‘ค]โˆ’2๐‘†๐‘–๐‘›[3๐‘ค]
Re (๐‘ค(๐‘Š๐‘ˆ๐ถ๐‘†) ) = Re (
Re(๐‘ค(WCS) ) = Re(
=
๐‘…๐‘’(๐‘Š(๐‘Š๐ธ๐‘๐‘‚) ) = ๐‘…๐‘’(
6(26+12๐ถ๐‘œ๐‘ [๐‘ค]โˆ’3๐ถ๐‘œ๐‘ [2๐‘ค]+4๐‘–๐‘†๐‘–๐‘›[๐‘ค]+3๐‘–๐‘†๐‘–๐‘›[2๐‘ค])
(14+Cos[๐‘ค])Sin[๐‘ค]
9+6Cos[๐‘ค]
),
)
(14+Cos[๐‘ค])Sin[๐‘ค]
9+6Cos[๐‘ค]
, and
1
(๐‘–(โˆ’10 + 15Cos[๐‘ค] โˆ’ 6Cos[2๐‘ค] + Cos[3๐‘ค]) + 45Sin[๐‘ค] โˆ’ 9Sin[2๐‘ค] + Sin[3๐‘ค]))
30
1
= 30 (45Sin[๐‘ค] โˆ’ 9Sin[2๐‘ค] + Sin[3๐‘ค])
3
3
1
= 2 Sin[๐‘ค] โˆ’ 10 Sin[2๐‘ค] + 30 Sin[3๐‘ค]
Figure 3.11 shows that WUCS has small dispersion errors and achieves the highest
resolution compared to WCS and the WENO scheme.
Figure 3.11. The dispersion in WUCS, WCS,
and the WENO scheme.
42
The dissipation errors are
2๐‘–+34๐‘–๐ถ๐‘œ๐‘ [๐‘ค]โˆ’34๐‘–๐ถ๐‘œ๐‘ [2๐‘ค]โˆ’2๐‘–๐ถ๐‘œ๐‘ [3๐‘ค]+270๐‘†๐‘–๐‘›[๐‘ค]โˆ’27๐‘†๐‘–๐‘›[2๐‘ค]โˆ’2๐‘†๐‘–๐‘›[3๐‘ค]
),
6(26+12๐ถ๐‘œ๐‘ [๐‘ค]โˆ’3๐ถ๐‘œ๐‘ [2๐‘ค]+4๐‘–๐‘†๐‘–๐‘›[๐‘ค]+3๐‘–๐‘†๐‘–๐‘›[2๐‘ค])
โˆ’ Im (๐‘ค(๐‘Š๐‘ˆ๐ถ๐‘†) ) = โˆ’ Im (
(14+๐ถ๐‘œ๐‘ [๐‘ค])๐‘†๐‘–๐‘›[๐‘ค]
โˆ’๐ผ๐‘š(๐‘ค(๐‘Š๐ถ๐‘†) ) = โˆ’๐ผ๐‘š (
9+6๐ถ๐‘œ๐‘ [๐‘ค]
) = 0, and
1
โˆ’ Im (๐‘Š(๐‘Š๐ธ๐‘๐‘‚) ) = โˆ’ Im( (๐‘–(โˆ’10 + 15Cos[๐‘ค] โˆ’ 6Cos[2๐‘ค] + Cos[3๐‘ค]) + 45Sin[๐‘ค] โˆ’ 9Sin[2๐‘ค] + Sin[3๐‘ค]))
30
1
= โˆ’ (30 (โˆ’10 + 15Cos[๐‘ค] โˆ’ 6Cos[2๐‘ค] + Cos[3๐‘ค]))
1
1
1
1
= 3 โˆ’ 2 Cos[๐‘ค] + 5 Cos[2๐‘ค] โˆ’ 30 Cos[3๐‘ค]
Similar to the analysis of the center stencils, Figure 3.12 demonstrates that WCS has no
dissipation errors while both the WENO scheme and WUCS are positively dissipative.
Also, the dissipation errors in the WENO scheme are the highest among all the three
schemes.
Figure 3.12. The dissipation in WUCS, WCS,
and the WENO scheme.
43
3.4 Decoupling the System of WUCS
WCS has a global dependency problem because it uses all grid points including
the downstream points to get the derivative near shocks. WUCS applies the technique of
decoupling the system in shock areas to change the global dependence into an upwinding
dependence. To explain the idea of this section, systems or matrices from WCS and
WUCS are illustrated. From (3.31), the final scheme of WCS is
1
3
1
1
23
7
1
1
๐ปโ€ฒ๐‘—โˆ’1 + ๐ปโ€ฒ๐‘—+1 + 3 ๐ปโ€ฒ๐‘—+3 โ‰ˆ โ„Ž (36 ๐ป๐‘—โˆ’3 โˆ’ 9 ๐ป๐‘—โˆ’1 โˆ’ 9 ๐ป๐‘—+3 + 36 ๐ป๐‘—+5 )
2
2
2
2
2
2
2
Hence, (3.31) can be written in a matrix form as follows:
๐ด๐ป โ€ฒ =
๐ป = [๐ป12
where
๐ป โ€ฒ = [๐ป
โ€ฒ1
2
๐ปโ€ฒ1+1
2
1
๐ต๐ป
โ„Ž
๐‘‡
๐ป1+1 ๐ป2+1 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐ป
1 ๐ป
1] ,
๐‘›โˆ’1+
๐‘›+
2
2
2
๐ปโ€ฒ 2+1
โ€ฆ
โ€ฆ
โ€ฆ
2
โ€ฆ
โ€ฆ
โ€ฆ
๐ปโ€ฒ ๐‘›โˆ’1
โ€ฆ
2
2
๐‘‡
๐ปโ€ฒ ๐‘›+1 ] , and
2
A is the derivative matrix of the WCS. A is a tri-diagonal matrix, which can be written
as follows:
๐‘0
๐‘Ž
๐‘0
๐‘
๐‘Ž
๐‘
๐‘
๐‘Ž
๐‘
๐‘
โ‹ฑ
๐ด=
๐‘
โ‹ฑ
๐‘Ž
โ‹ฑ
๐‘
๐‘Ž
๐‘
๐‘
๐‘Ž
[
1
1
where ๐‘Ž = 3 , ๐‘ = 1, ๐‘Ž๐‘›๐‘‘ ๐‘ = 3 .
44
๐‘
๐‘
๐‘Ž
๐‘
๐‘
โ‹ฑ
๐‘
โ‹ฑ
๐‘Ž
โ‹ฑ
๐‘
๐‘Ž
๐‘
๐‘
๐‘Ž๐‘›
๐‘
๐‘๐‘› ]
Also, the matrix B can be written as:
๐‘ก0
๐‘ 1
๐‘’
๐‘Ÿ0
๐‘ก1
๐‘ 
๐‘’
๐‘‘0
๐‘Ÿ1
๐‘ก
๐‘ 
โ‹ฑ
๐‘‘1
๐‘Ÿ
๐‘ก
โ‹ฑ
๐‘’
๐ต=
๐‘‘
๐‘Ÿ
โ‹ฑ
๐‘ 
๐‘’
๐‘‘
โ‹ฑ
๐‘ก
๐‘ 
๐‘’
โ‹ฑ
๐‘Ÿ
๐‘ก
๐‘ 
โ‹ฑ
๐‘‘
๐‘Ÿ
๐‘ก
โ‹ฑ
๐‘’
๐‘‘
๐‘Ÿ
โ‹ฑ
๐‘ 
๐‘’
๐‘‘
โ‹ฑ
๐‘ก
๐‘ ๐‘š
๐‘’๐‘›
[
where ๐‘’
โ‹ฑ
๐‘Ÿ
๐‘ก๐‘š
๐‘ ๐‘›
๐‘‘
๐‘Ÿ๐‘š
๐‘ก๐‘› ]
1
= 23
, ๐‘  = โˆ’ 79 , ๐‘ก = 0, ๐‘Ÿ = โˆ’ 19 , ๐‘Ž๐‘›๐‘‘ ๐‘‘ = 36
.
36
Near shock areas, the bias weights from the WENO scheme (3.22) are used with p=1.
Let us assume the shock location is detected as shown below:
๐‘0
๐‘Ž
๐ด=
๐‘0
๐‘
๐‘Ž
๐‘
๐‘
๐‘Ž
๐‘
๐‘
โ‹ฑ
๐‘
โ‹ฑ
๐‘Ž
โ‹ฑ
๐‘
๐‘Ž
๐‘
๐‘
๐‘Ž
[
๐‘
๐‘
๐‘Ž
๐‘
๐‘
โ‹ฑ
the shock
location
๐‘
โ‹ฑ
๐‘Ž
โ‹ฑ
๐‘
๐‘Ž
๐‘
๐‘
๐‘Ž๐‘›
๐‘
๐‘๐‘› ]
WCS minimizes the influence of a shock-containing candidate stencil by assigning a
smaller weight. However, WCS is global dependent resulting from the use of all grid
points including the downstream points (inside the triangles) to get the derivative, and
such usage is prohibited for the shock case.
45
As illustrated in (3.38), the 7th order WUCS can be used in smooth areas, and it is given
as follows:
3
4
8
๐‘“ฬ‚๐‘—โˆ’3 โˆ’ ๐‘“ฬ‚๐‘—โˆ’1 โˆ’ 2๐‘“ฬ‚๐‘—+1 โˆ’
๐‘“ฬ‚ 3
13
13
13 ๐‘—+2
2
2
2
=
1
5
239
81
7
๐‘“๐‘—โˆ’2 +
๐‘“๐‘—โˆ’1 โˆ’
๐‘“๐‘— โˆ’ ๐‘“๐‘—+1 โˆ’
๐‘“
39
12
156
52
156 ๐‘—+2
The WUCS can be written in a matrix form as
๐ด๐นฬ‚ = ๐บ
where A is the derivative matrix of the WUCS, which is a penta-diagonal matrix that
can be written as follows:
1
0
0
0
1
0
๐‘Ž
0
0
1
๐‘
โ‹ฑ
๐ด=
0
0
๐‘
โ‹ฑ
๐‘Ž
0
๐‘‘
โ‹ฑ
๐‘
๐‘Ž
๐‘’
โ‹ฑ
๐‘
๐‘
๐‘Ž
โ‹ฑ
๐‘‘
๐‘
๐‘
โ‹ฑ
๐‘’
๐‘‘
๐‘
โ‹ฑ
๐‘Ž
๐‘’
๐‘‘
โ‹ฑ
๐‘
0
[
where ๐‘Ž =
ฬ‚
๐นฬ‚ = [๐‘“12
3
13
,๐‘ = โˆ’
๐‘“ฬ‚1+1
2
๐บ = ๐ต๐น = [๐‘”0
where ๐น = [๐‘“0
4
13
, ๐‘ = โˆ’2, ๐‘‘ = โˆ’
๐‘“ฬ‚2+1
2
๐‘”1
๐‘“1
2
โ€ฆ
โ€ฆ
โ€ฆ
๐‘’
โ‹ฑ
๐‘
0
0
โ‹ฑ
๐‘‘
1
0
๐‘’
0
1]
, ๐‘Ž๐‘›๐‘‘ ๐‘’ = 0.
โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘“ฬ‚ 1
๐‘›โˆ’
๐‘”2
๐‘“2
8
13
,
โ€ฆ
โ€ฆ
โ€ฆ
โ€ฆ
โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘“๐‘›โˆ’1
46
๐‘‡
๐‘“ฬ‚๐‘›+1 ] , and
2
๐‘”๐‘›โˆ’1
๐‘”๐‘› ]๐‘‡
๐‘“๐‘› ]๐‘‡ and
๐‘Ž1
๐‘1
๐‘4
๐‘Ÿ
๐ต=
๐‘Ž2
๐‘2
๐‘4
๐‘ 
โ‹ฑ
๐‘Ž3
๐‘3
๐‘4
๐‘ก
โ‹ฑ
๐‘Ÿ
๐‘Ž4
๐‘4
๐‘4
๐‘ข
โ‹ฑ
๐‘ 
๐‘Ÿ
๐‘Ž5
๐‘5
๐‘4
๐‘ฃ
โ‹ฑ
๐‘ก
๐‘ 
๐‘Ÿ
๐‘Ž6
๐‘6
๐‘4
๐‘Ž7
๐‘7
๐‘4
โ‹ฑ
๐‘ข
๐‘ก
๐‘ 
๐‘Ÿ
๐‘ฃ
๐‘ข
๐‘ก
๐‘ 
โ‹ฑ
๐‘‘1
๐‘’1
[
๐‘ฃ
๐‘ข
๐‘ก
โ‹ฑ
๐‘Ÿ
๐‘‘2
๐‘’2
๐‘ฃ
๐‘ข
โ‹ฑ
๐‘ 
๐‘‘3
๐‘’3
๐‘ฃ
โ‹ฑ
๐‘ก
๐‘‘4
๐‘’4
โ‹ฑ
๐‘ข
๐‘‘5
๐‘’5
๐‘ฃ
๐‘‘6
๐‘’6
๐‘‘7
๐‘’7 ]
where
๐‘Ÿ=
1
5
239
81
7
,๐‘  =
,๐‘ก = โˆ’
,๐‘ข = โˆ’ ,๐‘ฃ = โˆ’
,
39
12
156
52
156
๐‘Ž1 =
363
617
853
2341
667
43
1
,๐‘Ž = โˆ’
,๐‘Ž =
,๐‘Ž = โˆ’
, ๐‘Ž5 =
,๐‘Ž = โˆ’
,๐‘Ž = ,
140 2
140 3 140 4
420
210 6
42 7 7
๐‘1 =
1
223
197
153
241
37
1
, ๐‘2 =
, ๐‘3 = โˆ’
, ๐‘4 =
, ๐‘5 = โˆ’
, ๐‘6 =
, ๐‘7 = โˆ’
,
7
140
140
140
420
210
42
๐‘1 = โˆ’
1
13
153
241
109
31
1
,๐‘ =
,๐‘ =
,๐‘ = โˆ’
,๐‘ =
,๐‘ = โˆ’
,๐‘ =
,
42 2 42 3 140 4
420 5 140 6
420 7 105
๐‘‘1 = โˆ’
1
37
241
153
197
223
1
, ๐‘‘2 =
, ๐‘‘3 = โˆ’
, ๐‘‘4 = โˆ’
, ๐‘‘5 = โˆ’
, ๐‘‘6 =
, ๐‘‘7 = ,
42
210
420
140
140
140
7
๐‘’1 =
1
43
667
2341
853
617
363
, ๐‘’2 = โˆ’
, ๐‘’3 =
, ๐‘’4 = โˆ’
, ๐‘’5 =
, ๐‘’6 = โˆ’
, ๐‘Ž๐‘›๐‘‘ ๐‘’7 =
.
7
42
210
420
140
140
140
Suppose the shock is located between ๐‘“k and ๐‘“k+1 as shown below:
๐บ = ๐ต๐น
47
๐‘Ž1 ๐‘Ž2 ๐‘Ž3 ๐‘Ž4 ๐‘Ž5 ๐‘Ž6 ๐‘Ž7
๐‘”0
๐‘“0
๐‘
๐‘
๐‘
๐‘
๐‘
๐‘
๐‘
๐‘”1
๐‘“1
1
2
3
4
5
6
7
๐‘“2
๐‘4 ๐‘4 ๐‘4 ๐‘4 ๐‘4 ๐‘4 ๐‘4
๐‘”2
๐‘”3
๐‘“3
๐‘Ÿ
๐‘ 
๐‘ก
๐‘ข ๐‘ฃ
โ‹ฎ
โ‹ฎ
โ‹ฑ โ‹ฑ โ‹ฑ โ‹ฑ โ‹ฑ
๐‘”๐‘˜โˆ’1
๐‘“kโˆ’1
๐‘Ÿ
๐‘ 
๐‘ก
๐‘ข ๐‘ฃ
๐‘”๐‘˜ =
๐‘“k
๐‘Ÿ
๐‘ 
๐‘ก
๐‘ข ๐‘ฃ
๐‘”๐‘˜+1
f
๐‘Ÿ
๐‘ 
๐‘ก
๐‘ข ๐‘ฃ
๐‘˜+1
๐‘”๐‘˜+2
๐‘“k+2
๐‘Ÿ
๐‘ 
๐‘ก
๐‘ข ๐‘ฃ
โ‹ฎ
โ‹ฎ
โ‹ฑ โ‹ฑ โ‹ฑ โ‹ฑ โ‹ฑ
๐‘”๐‘›โˆ’2
๐‘“
๐‘Ÿ
๐‘ 
๐‘ก
๐‘ข ๐‘ฃ
๐‘›โˆ’2
๐‘”๐‘›โˆ’1
๐‘‘1 ๐‘‘2 ๐‘‘3 ๐‘‘4 ๐‘‘5 ๐‘‘6 ๐‘‘7 ๐‘“๐‘›โˆ’1
[ ๐‘”๐‘› ] [
๐‘’1 ๐‘’2 ๐‘’3 ๐‘’4 ๐‘’5 ๐‘’6 ๐‘’7 ] [ ๐‘“๐‘› ]
the shock
location
The location of the shock in the derivative matrix A will be located as follows:
๐ด๐นฬ‚ = ๐บ
1
0
0
0
1
0
๐‘Ž
0
0
1
๐‘
โ‹ฑ
๐‘“ฬ‚1
2
0
0
๐‘
โ‹ฑ
๐‘Ž
๐‘“ฬ‚1+1
2
0
๐‘‘
โ‹ฑ
๐‘
๐‘Ž
๐‘“ฬ‚2+1
2
๐‘’
โ‹ฑ
๐‘
๐‘
๐‘Ž
๐‘“ฬ‚3+1
โ‹ฑ
๐‘‘
๐‘
๐‘
๐‘Ž
2
โ‹ฎ
๐‘’
๐‘‘
๐‘
๐‘
โ‹ฑ
[
๐‘“ฬ‚๐‘˜โˆ’1+1
2
๐‘’
๐‘‘
๐‘
โ‹ฑ
๐‘Ž
๐‘“ฬ‚๐‘˜+1
2
๐‘’
๐‘‘
โ‹ฑ
๐‘
0
๐‘“ฬ‚๐‘˜+1+1
๐‘’
โ‹ฑ
๐‘
0
0
2
โ‹ฑ
๐‘‘
1
0
๐‘“ฬ‚๐‘˜+2+1
2
โ‹ฎ
๐‘’
0
1]
๐‘“ฬ‚๐‘›โˆ’1โˆ’1
2
๐‘“ฬ‚๐‘›โˆ’1
2
[
๐‘“ฬ‚๐‘›+1
2
]
๐‘”0
๐‘”1
๐‘”2
๐‘”3
โ‹ฎ
๐‘”๐‘˜โˆ’1
๐‘”๐‘˜
the shock
=
๐‘”๐‘˜+1
location
๐‘”๐‘˜+2
โ‹ฎ
๐‘”๐‘›โˆ’2
๐‘”๐‘›โˆ’1
[ ๐‘”๐‘› ]
The elements inside the triangle lead to the global dependency problem because of
the downstream points ๐‘”k+1 and ๐‘”k+2 , which means using ๐‘“k+1 and ๐‘“k+2 to get the
derivative of ๐‘“k . This problem is avoided in WUCS by decoupling the derivative matrix
into two submatrices as shown below.
48
1
0
0
0
1
0
๐‘Ž
0
0
1
๐‘
โ‹ฑ
๐‘“ฬ‚1
2
0
0
๐‘
โ‹ฑ
๐‘Ž
๐‘“ฬ‚1+1
2
0
๐‘‘
โ‹ฑ
๐‘
๐‘Ž
๐‘“ฬ‚2+1
๐‘”0
๐‘”1
๐‘”2
๐‘”3
โ‹ฎ
๐‘”๐‘˜โˆ’1
= ๐‘”๐‘˜
๐‘”๐‘˜+1
๐‘”๐‘˜+2
โ‹ฎ
๐‘”๐‘›โˆ’2
๐‘”๐‘›โˆ’1
[ ๐‘”๐‘› ]
2
๐‘’
โ‹ฑ
๐‘
๐‘
๐‘Ž
๐‘“ฬ‚3+1
โ‹ฑ
๐‘‘
๐‘
๐‘
๐‘Ž
2
โ‹ฎ
๐‘’
๐‘‘
๐‘
๐‘
โ‹ฑ
๐‘“ฬ‚๐‘˜โˆ’1+1
2
๐‘“ฬ‚๐‘˜+1
๐‘’
๐‘‘
๐‘
โ‹ฑ
๐‘Ž
2
๐‘’
๐‘‘
โ‹ฑ
๐‘
0
[
๐‘“ฬ‚๐‘˜+1+1
๐‘’
โ‹ฑ
๐‘
0
0
2
โ‹ฑ
๐‘‘
1
0
๐‘“ฬ‚๐‘˜+2+1
2
โ‹ฎ
๐‘’
0
1]
๐‘“ฬ‚๐‘›โˆ’1โˆ’1
2
๐‘“ฬ‚๐‘›โˆ’1
2
[
๐‘“ฬ‚๐‘›+1
2
]
The shock points are treated as boundary points, so the elements inside the two triangles
above become zeros. The resulting subsystems or submatrices are
1
0
0
0
1
0
๐‘Ž
0
0
1
๐‘
โ‹ฑ
[
0
1
0
๐‘Ž
0
0
1
๐‘
โ‹ฑ
]
๐‘”๐‘˜+1
๐‘”๐‘˜+2
๐‘”๐‘˜+3
๐‘”๐‘˜+4
โ‹ฎ .
=
โ‹ฎ
๐‘”๐‘›โˆ’2
๐‘”๐‘›โˆ’1
[ ๐‘”๐‘› ]
2
0
0
๐‘
โ‹ฑ
โ‹ฑ
๐‘“ฬ‚1+1
2
0
๐‘‘
โ‹ฑ
โ‹ฑ
๐‘Ž
๐‘“ฬ‚2+1
๐‘’
โ‹ฑ
โ‹ฑ
๐‘
[
1
0
0
]
๐‘”0
๐‘”1
๐‘”2
๐‘”3
=
โ‹ฎ and
โ‹ฎ
๐‘”๐‘˜โˆ’2
๐‘”๐‘˜โˆ’1
[ ๐‘”๐‘˜ ]
๐‘“ฬ‚1
2
โ‹ฑ
โ‹ฑ
๐‘
0
0
๐‘“ฬ‚3+1
2
โ‹ฑ
๐‘‘
1
0
โ‹ฎ
โ‹ฎ
๐‘’
0
1]
๐‘“ฬ‚๐‘˜โˆ’2+1
2
๐‘“ฬ‚๐‘˜โˆ’1+1
2
[
๐‘“ฬ‚๐‘˜+1
2
๐‘“ฬ‚๐‘˜+1+1
2
0
0
๐‘
โ‹ฑ
โ‹ฑ
๐‘“ฬ‚๐‘˜+2+1
2
0
๐‘‘
โ‹ฑ
โ‹ฑ
๐‘Ž
๐‘“ฬ‚๐‘˜+2+1
๐‘’
โ‹ฑ
โ‹ฑ
๐‘
2
โ‹ฑ
โ‹ฑ
๐‘
0
0
๐‘“ฬ‚๐‘˜+2+1
2
โ‹ฑ
๐‘‘
1
0
โ‹ฎ
โ‹ฎ
๐‘’
0
1]
๐‘“ฬ‚๐‘›โˆ’1โˆ’1
2
๐‘“ฬ‚๐‘›โˆ’1
2
[
49
๐‘“ฬ‚๐‘›+1
2
the
shock
location
Also, the right hand side of the system will be decoupled into the following subsystems:
๐‘”0
๐‘”1
๐‘”2
๐‘”3
โ‹ฎ
โ‹ฎ
โ‹ฎ =
โ‹ฎ
โ‹ฎ
โ‹ฎ
๐‘”๐‘˜โˆ’2
๐‘”๐‘˜โˆ’1
[ ๐‘”๐‘˜ ]
๐‘”๐‘˜+1
๐‘”๐‘˜+2
๐‘”๐‘˜+3
๐‘”๐‘˜+4
โ‹ฎ
โ‹ฎ
โ‹ฎ =
โ‹ฎ
โ‹ฎ
โ‹ฎ
๐‘”๐‘›โˆ’2
๐‘”๐‘›โˆ’1
[ ๐‘”๐‘› ]
๐‘Ž1
๐‘1
๐‘4
๐‘Ÿ
๐‘Ž2
๐‘2
๐‘4
๐‘ 
โ‹ฑ
๐‘Ž3
๐‘3
๐‘4
๐‘ก
โ‹ฑ
๐‘Ÿ
๐‘Ž4
๐‘4
๐‘4
๐‘ข
โ‹ฑ
๐‘ 
๐‘Ÿ
๐‘Ž5
๐‘5
๐‘4
๐‘ฃ
โ‹ฑ
๐‘ก
๐‘ 
๐‘Ÿ
๐‘Ž6
๐‘6
๐‘4
โ‹ฑ
๐‘ข
๐‘ก
๐‘ 
๐‘Ÿ
๐‘ฃ
๐‘ข
๐‘ก
๐‘ 
โ‹ฑ
๐‘‘1
๐‘’1
[
๐‘Ž1
๐‘1
๐‘4
๐‘Ÿ
[
๐‘Ž2
๐‘2
๐‘4
๐‘ 
โ‹ฑ
๐‘Ž3
๐‘3
๐‘4
๐‘ก
โ‹ฑ
๐‘Ÿ
๐‘Ž4
๐‘4
๐‘4
๐‘ข
โ‹ฑ
๐‘ 
๐‘Ÿ
๐‘Ž5
๐‘5
๐‘4
๐‘ฃ
โ‹ฑ
๐‘ก
๐‘ 
๐‘Ÿ
๐‘Ž6
๐‘6
๐‘4
โ‹ฑ
๐‘ข
๐‘ก
๐‘ 
๐‘Ÿ
๐‘ฃ
๐‘‘6
๐‘’6
๐‘“0
๐‘“1
๐‘“2
๐‘“3
โ‹ฎ
โ‹ฎ
and
โ‹ฎ
โ‹ฎ
โ‹ฎ
โ‹ฎ
๐‘“๐‘˜โˆ’2
๐‘‘7 ๐‘“๐‘˜โˆ’1
๐‘’7 ] [ ๐‘“๐‘˜ ]
๐‘ฃ
๐‘‘6
๐‘’6
๐‘“๐‘˜+1
๐‘“๐‘˜+2
๐‘“๐‘˜+3
๐‘“๐‘˜+4
โ‹ฎ
โ‹ฎ
โ‹ฎ .
โ‹ฎ
โ‹ฎ
โ‹ฎ
๐‘“๐‘›โˆ’2
๐‘‘7 ๐‘“๐‘›โˆ’1
๐‘’7 ] [ ๐‘“๐‘› ]
๐‘Ž7
๐‘7
๐‘4
๐‘ฃ
๐‘ข
๐‘ก
โ‹ฑ
๐‘Ÿ
๐‘‘2
๐‘’2
๐‘ฃ
๐‘ข
โ‹ฑ
๐‘ 
๐‘‘3
๐‘’3
๐‘ฃ
โ‹ฑ
๐‘ก
๐‘‘4
๐‘’4
โ‹ฑ
๐‘ข
๐‘‘5
๐‘’5
๐‘Ž7
๐‘7
๐‘4
๐‘ฃ
๐‘ข
๐‘ก
๐‘ 
โ‹ฑ
๐‘‘1
๐‘’1
๐‘ฃ
๐‘ข
๐‘ก
โ‹ฑ
๐‘Ÿ
๐‘‘2
๐‘’2
๐‘ฃ
๐‘ข
โ‹ฑ
๐‘ 
๐‘‘3
๐‘’3
50
๐‘ฃ
โ‹ฑ
๐‘ก
๐‘‘4
๐‘’4
โ‹ฑ
๐‘ข
๐‘‘5
๐‘’5
3.5 Conclusion
In this chapter, the Weighted Upwinding Compact Scheme (WUCS), which
belongs to the family of finite difference schemes, is proposed. Based on the analysis of
the dissipation and dispersion errors, the upwinding candidates are constructed in a way
such that the left and central candidates have a non-negative dissipation. In addition, the
analysis shows that WUCS has small dispersion errors and achieves the highest resolution
compared to WCS and the WENO scheme.
Furthermore, the global dependency problem, using all grid points including the
downstream points to get the derivative, is prohibited for the shock case, so it is avoided
with WUCS by decoupling the system into two subsystems.
51