supp8

SUPPLEMENTARY INFORMATION
Sulfanilic acid functionalized mesoporous SBA-15: A water-tolerant solid acid
catalyst for the synthesis of uracil fused spirooxindoles as antioxidant agents
ROBABEH BAHARFAR* and RAZIEH AZIMI
Department of Chemistry, University of Mazandaran, P. O. Box 47415, Babolsar, Iran
e-mail: [email protected]
Keywords. Spirooxindole; water-tolerant catalyst; mesoporous silica; antioxidant agent.
1
Table of Contents
Figure S1. FT-IR spectra of (a) SBA-15, (b) SBA-15-Cl and (c) SBA-15-PhSO3H (KBr)
Figure S2. Thermal gravimetric analysis of (a) SBA-15 and (b) SBA-15-PhSO3H
Figure S3. XRD pattern of the SBA-15-PhSO3H
Figure S4. TEM image of SBA-15-PhSO3H
Figure S5. 1H NMR spectrum (400 MHz, DMSO-d6) of 4a
Figure S6. 13C NMR spectrum (100 MHz, DMSO-d6) of 4a
Figure S7. 1H NMR spectrum (400 MHz, DMSO-d6) of 4b
Figure S8. 13C NMR spectrum (100 MHz, DMSO-d6) of 4b
Figure S9. 1H NMR spectrum (400 MHz, DMSO-d6) of 4c
Figure S10. 13C NMR spectrum (100 MHz, DMSO-d6) of 4c
Figure S11. 1H NMR spectrum (400 MHz, DMSO-d6) of 4d
Figure S12. 13C NMR spectrum (100 MHz, DMSO-d6) of 4d
Figure S13. 1H NMR spectrum (400 MHz, DMSO-d6) of 4e
Figure S14. 13C NMR spectrum (100 MHz, DMSO-d6) of 4e
Figure S15. 1H NMR spectrum (400 MHz, DMSO-d6) of 4f
Figure S16. 13C NMR spectrum (100 MHz, DMSO-d6) of 4f
Figure S17. 1H NMR spectrum (400 MHz, DMSO-d6) of 4g
Figure S18. 13C NMR spectrum (100 MHz, DMSO-d6) of 4g
Figure S19. 1H NMR spectrum (400 MHz, DMSO-d6) of 4h
Figure S20. 13C NMR spectrum (100 MHz, DMSO-d6) of 4h
Figure S21. 1H NMR spectrum (400 MHz, DMSO-d6) of 4i
Figure S22. 13C NMR spectrum (100 MHz, DMSO-d6) of 4i
Figure S23. 1H NMR spectrum (400 MHz, DMSO-d6) of 4j
Figure S24. 13C NMR spectrum (100 MHz, DMSO-d6) of 4j
2
Supplementary information
Catalyst characterization
FT-IR spectra of SBA-15, SBA-15-Cl and SBA-15-PhSO3H are shown in Figure S1. The peaks
around 460, 800 and 1100 cm−1 are the typical Si–O–Si band attributed to the condensed silica
network present in pure and modified SBA-15 materials. For all samples, the absorption bands
at 1630 and 3440 cm-1 can be associated to O–H vibration from silanol groups and physisorbed
water. The characteristic peaks at about 2800 and 1450 cm−1 are related to the C-H stretching
and CH2 bending of propyl spacer, respectively (Figure S1b,c); the absorption bands at 3064
cm−1 and 1602 cm−1 due to stretching vibrations of C–H and C=C aromatic ring displayed; in
addition, C–N vibration is observed at 1550 cm−1 (Figure S1c), indicating that sulfanilic acid
has been loaded into the SBA-15 support.
Figure S1. FT-IR spectra of (a) SBA-15, (b) SBA-15-Cl and (c) SBA-15-PhSO3H (KBr)
3
The thermogravimetric curves of the parent and modified SBA-15 materials are shown in
Figure S2. The profiles show that the SBA-15 silica material had a relatively high level of
thermal stability. TG curve of SBA-15-PhSO3H reveals an initial weight loss of 1.32% below
150 ºC related to the adsorbed water on the surface of catalyst. Complete loss of the organic
species is observed in the temperature range of 220–600 ◦C, with the amount of organic moiety
nearly 14.0% (0.65 mmol of sulfanilic acid per 1.0 g of the catalyst).
Figure S2. Thermal gravimetric analysis of (a) SBA-15 and (b) SBA-15-PhSO3H
XRD pattern of the SBA-15-PhSO3H (Figure S3) shows three peaks, a strong peak at 0.8◦
and two weak peaks around 1.5◦ and 1.7◦, which are assigned to 1 0 0, 1 1 0 and 2 0 0 reflections
of the highly ordered periodic arrangement of 2D hexagonal channels. As can be seen, the
hexagonal pore structure of SBA-15 will be retained even after being incorporated with the
silane coupling agent and then with sulfanilic acid.
4
Figure S3. XRD pattern of the SBA-15-PhSO3H
Figure S4 shows TEM image of SBA-15-PhSO3H. In agreement with the above XRD
result, TEM study established the 2D hexagonal pore arrays and mesostructure of SBA-15
material. Meanwhile, the average pore diameter of SBA-15-PhSO3H estimated by the TEM
measurements was ca. 6 nm.
Figure S4. TEM image of SBA-15-PhSO3H
5
Physical and spectral data for the uracil fused spirooxindoles
1',3',8',8'-Tetramethyl-8',9'-dihydro-1'H-spiro[indoline-3,5'-pyrimido[4,5-b] quinoline]2,2',4',6'(3'H,7'H,10'H)-tetraone (4a):
Pale yellow powder; M.p. > 300 oC; IR (KBr) νmax: 3290, 3283, 3087, 2958, 1708, 1658, 1505,
1375, 1245, 1106 cm-1; 1H NMR (400.13 MHz, DMSO-d6) δ: 0.92 and 1.01 (2s, 6H, 2CH3), 1.94
and 2.12 (ABq, J = 16.0 Hz, 2H, CH2), 2.60 (s, 2H, CH2), 2.98 and 3.47 (2s, 6H, 2NCH3), 6.64
(d, J = 7.6 Hz, 1Harom), 6.73 (t, J = 7.6 Hz, 1Harom), 6.88 (d, J = 7.2 Hz, 1Harom), 7.00 (t, J = 7.4
Hz, 1Harom), 8.9 (br s, 1H, NH), 10.09 (s, 1H, NH) ppm; 13C NMR (100.6 MHz, DMSO-d6) δ:
26.9, 27.9, 28.8, 30.9, 32.3, 48.9 (Cspiro), 51.0, 90.5, 108.4, 111.3, 120.8, 123.2, 127.7, 136.2,
143.9, 144.5, 150.5, 150.6, 159.7, 180.2, 193.9 ppm; MS (EI, 70 eV) m/z: 406.1 (M+); Anal.
Calcd for C22H22N4O4 (406.43): C, 65.01; H, 5.46; N, 13.78%. Found: C, 65.08; H, 5.39; N,
13.71%.
1',3'-Dimethyl-8',9'-dihydro-1'H-spiro[indoline-3,5'-pyrimido[4,5-b]quinoline]-2,2',4',6'(3'H,
7'H, 10'H)-tetraone (4b):
Pale yellow powder; M.p. > 300 oC; IR (KBr) νmax: 3337, 3184, 3072, 2949, 1699, 1661, 1618,
1503, 1375, 1199, 1109 cm-1; 1H NMR (400.13 MHz, DMSO-d6) δ: 1.78-1.91 (m, 2H, CH2),
2.06-2.21 (m, 2H, CH2), 2.71-2.76 (m, 2H, CH2), 2.98 and 3.48 (2s, 6H, 2NCH3), 6.62 (d, J = 7.6
Hz, 1Harom), 6.73 (t, J = 7.2 Hz, 1Harom), 6.88 (d, J = 7.2 Hz, 1Harom), 7.00 (t, J = 7.2 Hz, 1Harom),
9.05 (br s, 1H, NH), 10.8 (s, 1H, NH) ppm;
13
C NMR (100.6 MHz, DMSO-d6) δ: 21.1, 27.5,
27.9, 30.9, 37.7, 49.0 (Cspiro), 90.5, 108.2, 112.6, 120.8, 123.3, 127.6, 136.4, 143.9, 144.3, 150.6,
152.6, 159.6, 180.2, 194.0 ppm; MS (EI, 70 eV) m/z: 378.1 (M+); Anal. Calcd for C20H18N4O4
(378.38): C, 63.48; H, 4.79; N, 14.81%. Found: C, 63.52; H, 4.73; N, 14.78%.
6
5-Chloro-1',3',8',8'-tetramethyl-8',9'-dihydro-1'H-spiro[indoline-3,5'-pyrimido[4,5-b]
quinoline]-2,2',4',6'(3'H,7'H,10'H)-tetraone (4c):
Pale yellow powder; M.p. > 300 oC; IR (KBr) νmax: 3370, 2958, 1699, 1640, 1507, 1478, 1373,
1313, 1178 cm-1; 1H NMR (400.13 MHz, DMSO-d6) δ: 0.94 and 0.99 (2s, 6H, 2CH3), 1.99 and
2.11 (ABq, J = 16.2 Hz, 2H, CH2), 2.60 (br s, 2H, CH2), 2.96 and 3.40 (2s, 6H, 2NCH3), 6.67 (d,
J = 8.0 Hz, 1Harom), 6.90 (s, 1Harom), 7.05 (d, J = 8.0 Hz, 1Harom), 9.00 (br s, 1H, NH), 10.24 (s,
1H, NH) ppm; 13C NMR (100.6 MHz, DMSO-d6) δ: 27.2, 27.7, 28.5, 30.4, 32.4, 48.7 (Cspiro),
50.9, 89.9, 109.4, 110.8, 123.3, 126.5, 127.5, 138.2, 143.0, 144.8, 150.5, 159.5, 180.0, 194.1
ppm; MS (EI, 70 eV) m/z: 440.13 (M+) and 442.1 (M+2); Anal. Calcd for C22H21ClN4O4
(440.13): C, 59.93; H, 4.80; N, 12.71%. Found: C, 59.87; H, 4.72; N, 12.79%.
5-Chloro-1',3'-dimethyl-8',9'-dihydro-1'H-spiro[indoline-3,5'-pyrimido
[4,5-b]
quinoline]-
2,2',4',6'(3'H,7'H,10'H)-tetraone (4d):
Pale yellow powder, M.p. > 300 oC; IR (KBr) νmax: 3292, 2956, 1707, 1656, 1502, 1377, 1204,
1110 cm-1; 1H NMR (400.13 MHz, DMSO-d6) δ: 1.81-1.91(m, 2H, CH2), 2.13-2.18 (m, 2H,
CH2), 2.67-2.75 (m, 2H, CH2), 2.99 and 3.47 (2s, 6H, 2NCH3), 6.63 (d, J = 8.0 Hz, 1Harom), 6.94
(d, J = 2.0 Hz, 1Harom), 7.05 (dd, J = 8.0 and 2.0 Hz, 1Harom), 9.05 (br s, 1H, NH), 10.23 (s, 1H,
NH) ppm; 13C NMR (100.6 MHz, DMSO-d6) δ: 21.0, 27.5, 28.0, 31.0, 37.6, 49.4 (Cspiro), 90.0,
109.4, 112.0, 123.5, 124.7, 127.4, 138.4, 143.0, 144.6, 150.5, 153.1, 159.8, 180.0, 194.2 ppm;
MS (EI, 70 eV) m/z: 412.2 (M+) and 414.1 (M+2); Anal. Calcd for C20H17ClN4O4 (412.83): C,
58.19; H, 4.15; N, 13.57%. Found: C, 58.24; H, 4.08; N, 13.63%.
7
5-Bromo-1',3'-dimethyl-8',9'-dihydro-1'H-spiro[indoline-3,5'-pyrimido[4,5-b]quinoline]2,2',4',6'(3'H,7'H,10'H)-tetraone (4e):
Pale yellow powder; M.p. > 300 oC; IR (KBr) νmax: 3288, 2956, 1707, 1655, 1501, 1377, 1204,
1111 cm-1; 1H NMR (400.13 MHz, DMSO-d6) δ: 1.85 (br s, 2H, CH2), 2.15 (br s, 2H, CH2), 2.63-2.78 (m, 2H, CH2), 2.99 and 3.47 (2s, 6H, 2NCH3), 6.59 (d, J = 8.0 Hz, 1Harom), 7.05 (s,
1Harom), 7.17 (d, J = 8.0 Hz, 1Harom), 9.06 (br s, 1H, NH), 10.25 (s, 1H, NH) ppm;
13
C NMR
(100.6 MHz, DMSO-d6) δ: 21.0, 27.5, 28.0, 31.0, 37.6, 49.3 (Cspiro), 90.0, 110.1, 112.0, 112.4,
126.1, 130.3, 138.8, 143.4, 144.6, 150.5, 153.2, 159.8, 180.0, 194.3 ppm; MS (EI, 70 eV) m/z:
457.0 (M+) and 459.1 (M+2); Anal. Calcd for C20H17BrN4O4 (457.28): C, 52.53; H, 3.75; N,
12.25%. Found: C, 52.61; H, 3.69; N, 12.21%.
1',3',8',8'-Tetramethyl-5-nitro-8',9'-dihydro-1'H-spiro[indoline-3,5'-pyrimido[4,5b]quinoline]-2,2',4',6'(3'H,7'H,10'H)-tetraone (4f):
Brown powder; M.p. > 300 oC; IR (KBr) νmax: 3288, 3132, 2958, 1708, 1660, 1504, 1333, 1249,
1068 cm-1; 1H NMR (400.13 MHz, DMSO-d6) δ: 0.94 and 1.01 (2s, 6H, 2CH3), 2.01 and 2.10
(ABq, J = 16.0 Hz, 2H, CH2), 2.62 and 2.68 (ABq, J = 16.2 Hz, 2H, CH2), 2.98 and 3.48 (2s, 6H,
2NCH3), 6.85 (d, J = 8.4 Hz, 1Harom), 7.80 (d, J = 2.4 Hz, 1Harom), 8.05 (dd, J = 8.8 and 2.4 Hz,
1Harom), 9.16 (br s, 1H, NH), 10.92 (s, 1H, NH) ppm; 13C NMR (100.6 MHz, DMSO-d6) δ: 27.3,
28.0, 28.3, 31.0, 32.4, 40.6, 49.0 (Cspiro), 50.7, 108.2, 110.4, 118.6, 125.6, 137.2, 141.9, 145.1,
150.5, 150.8, 151.8, 160.0, 181.0, 194.4 ppm; MS (EI, 70 eV) m/z: 451.1 (M+); Anal. Calcd for
C22H21N5O6 (451.43): C, 58.53; H, 4.69; N, 15.51%. Found: C, 58.46; H, 4.74; N, 15.48%.
8',8'-dimethyl-2'-thioxo-2',3',8',9'-tetrahydro-1'H-spiro[indoline-3,5'-pyrimido[4,5-b]quinoline]2,4',6'(7'H,10'H)-trione (4j):
8
Yellow powder; M.p. > 300 oC; IR (KBr) νmax: 3318, 3198, 3104, 2957, 1662, 1619, 1568, 1512,
1375, 1182, 1053 cm-1; 1H NMR (400.13 MHz, DMSO-d6) δ: 0.92 and 1.00 (2s, 6H, 2CH3), 1.93
and 2.11 (ABq, J = 15.6 Hz, 2H, CH2), 2.40 (s, 2H, CH2), 6.63-7.02 (4Harom), 8.70, 10.14, 11.72
and 12.07 (4s, 4H, 4NH) ppm;
13
C NMR (100.6 MHz, DMSO-d6) δ: 26.9, 28.6, 32.4, 47.7
(Cspiro), 51.0, 94.0, 108.5, 110.7, 121.1, 123.2, 127.9, 135.8, 143.7, 144.0, 149.8, 159.0, 173.7,
179.5, 193.7 ppm; MS (EI, 70 eV) m/z: 394.1 (M+); Anal. Calcd for C20H18N4O3S (394.45): C,
60.90; H, 4.60; N, 14.20; S, 8.13%. Found: C, 60.98; H, 4.56; N, 14.27; S, 8.06%.
1
H NMR and 13C NMR spectra for compounds 4a-j
9
Figure S5. 1H NMR spectrum (400 MHz, DMSO-d6) of 4a
10
Figure S6. 13C NMR spectrum (100 MHz, DMSO-d6) of 4a
11
Figure S7. 1H NMR spectrum (400 MHz, DMSO-d6) of 4b
12
Figure S8. 13C NMR spectrum (100 MHz, DMSO-d6) of 4b
13
Figure S9. 1H NMR spectrum (400 MHz, DMSO-d6) of 4c
14
Figure S10. 13C NMR spectrum (100 MHz, DMSO-d6) of 4c
15
Figure S11. 1H NMR spectrum (400 MHz, DMSO-d6) of 4d
16
Figure S12. 13C NMR spectrum (100 MHz, DMSO-d6) of 4d
17
Figure S13. 1H NMR spectrum (400 MHz, DMSO-d6) of 4e
18
Figure S14. 13C NMR spectrum (100 MHz, DMSO-d6) of 4e
19
Figure S15. 1H NMR spectrum (400 MHz, DMSO-d6) of 4f
20
Figure S16. 13C NMR spectrum (100 MHz, DMSO-d6) of 4f
21
Figure S17. 1H NMR spectrum (400 MHz, DMSO-d6) of 4g
22
Figure S18. 13C NMR spectrum (100 MHz, DMSO-d6) of 4g
23
Figure S19. 1H NMR spectrum (400 MHz, DMSO-d6) of 4h
24
Figure S20. 13C NMR spectrum (100 MHz, DMSO-d6) of 4h
25
Figure S21. 1H NMR spectrum (400 MHz, DMSO-d6) of 4i
26
Figure S22. 13C NMR spectrum (100 MHz, DMSO-d6) of 4i
27
Figure S23. 1H NMR spectrum (400 MHz, DMSO-d6) of 4j
28
Figure S24. 13C NMR spectrum (100 MHz, DMSO-d6) of 4j
29