SUPPLEMENTARY INFORMATION Sulfanilic acid functionalized mesoporous SBA-15: A water-tolerant solid acid catalyst for the synthesis of uracil fused spirooxindoles as antioxidant agents ROBABEH BAHARFAR* and RAZIEH AZIMI Department of Chemistry, University of Mazandaran, P. O. Box 47415, Babolsar, Iran e-mail: [email protected] Keywords. Spirooxindole; water-tolerant catalyst; mesoporous silica; antioxidant agent. 1 Table of Contents Figure S1. FT-IR spectra of (a) SBA-15, (b) SBA-15-Cl and (c) SBA-15-PhSO3H (KBr) Figure S2. Thermal gravimetric analysis of (a) SBA-15 and (b) SBA-15-PhSO3H Figure S3. XRD pattern of the SBA-15-PhSO3H Figure S4. TEM image of SBA-15-PhSO3H Figure S5. 1H NMR spectrum (400 MHz, DMSO-d6) of 4a Figure S6. 13C NMR spectrum (100 MHz, DMSO-d6) of 4a Figure S7. 1H NMR spectrum (400 MHz, DMSO-d6) of 4b Figure S8. 13C NMR spectrum (100 MHz, DMSO-d6) of 4b Figure S9. 1H NMR spectrum (400 MHz, DMSO-d6) of 4c Figure S10. 13C NMR spectrum (100 MHz, DMSO-d6) of 4c Figure S11. 1H NMR spectrum (400 MHz, DMSO-d6) of 4d Figure S12. 13C NMR spectrum (100 MHz, DMSO-d6) of 4d Figure S13. 1H NMR spectrum (400 MHz, DMSO-d6) of 4e Figure S14. 13C NMR spectrum (100 MHz, DMSO-d6) of 4e Figure S15. 1H NMR spectrum (400 MHz, DMSO-d6) of 4f Figure S16. 13C NMR spectrum (100 MHz, DMSO-d6) of 4f Figure S17. 1H NMR spectrum (400 MHz, DMSO-d6) of 4g Figure S18. 13C NMR spectrum (100 MHz, DMSO-d6) of 4g Figure S19. 1H NMR spectrum (400 MHz, DMSO-d6) of 4h Figure S20. 13C NMR spectrum (100 MHz, DMSO-d6) of 4h Figure S21. 1H NMR spectrum (400 MHz, DMSO-d6) of 4i Figure S22. 13C NMR spectrum (100 MHz, DMSO-d6) of 4i Figure S23. 1H NMR spectrum (400 MHz, DMSO-d6) of 4j Figure S24. 13C NMR spectrum (100 MHz, DMSO-d6) of 4j 2 Supplementary information Catalyst characterization FT-IR spectra of SBA-15, SBA-15-Cl and SBA-15-PhSO3H are shown in Figure S1. The peaks around 460, 800 and 1100 cm−1 are the typical Si–O–Si band attributed to the condensed silica network present in pure and modified SBA-15 materials. For all samples, the absorption bands at 1630 and 3440 cm-1 can be associated to O–H vibration from silanol groups and physisorbed water. The characteristic peaks at about 2800 and 1450 cm−1 are related to the C-H stretching and CH2 bending of propyl spacer, respectively (Figure S1b,c); the absorption bands at 3064 cm−1 and 1602 cm−1 due to stretching vibrations of C–H and C=C aromatic ring displayed; in addition, C–N vibration is observed at 1550 cm−1 (Figure S1c), indicating that sulfanilic acid has been loaded into the SBA-15 support. Figure S1. FT-IR spectra of (a) SBA-15, (b) SBA-15-Cl and (c) SBA-15-PhSO3H (KBr) 3 The thermogravimetric curves of the parent and modified SBA-15 materials are shown in Figure S2. The profiles show that the SBA-15 silica material had a relatively high level of thermal stability. TG curve of SBA-15-PhSO3H reveals an initial weight loss of 1.32% below 150 ºC related to the adsorbed water on the surface of catalyst. Complete loss of the organic species is observed in the temperature range of 220–600 ◦C, with the amount of organic moiety nearly 14.0% (0.65 mmol of sulfanilic acid per 1.0 g of the catalyst). Figure S2. Thermal gravimetric analysis of (a) SBA-15 and (b) SBA-15-PhSO3H XRD pattern of the SBA-15-PhSO3H (Figure S3) shows three peaks, a strong peak at 0.8◦ and two weak peaks around 1.5◦ and 1.7◦, which are assigned to 1 0 0, 1 1 0 and 2 0 0 reflections of the highly ordered periodic arrangement of 2D hexagonal channels. As can be seen, the hexagonal pore structure of SBA-15 will be retained even after being incorporated with the silane coupling agent and then with sulfanilic acid. 4 Figure S3. XRD pattern of the SBA-15-PhSO3H Figure S4 shows TEM image of SBA-15-PhSO3H. In agreement with the above XRD result, TEM study established the 2D hexagonal pore arrays and mesostructure of SBA-15 material. Meanwhile, the average pore diameter of SBA-15-PhSO3H estimated by the TEM measurements was ca. 6 nm. Figure S4. TEM image of SBA-15-PhSO3H 5 Physical and spectral data for the uracil fused spirooxindoles 1',3',8',8'-Tetramethyl-8',9'-dihydro-1'H-spiro[indoline-3,5'-pyrimido[4,5-b] quinoline]2,2',4',6'(3'H,7'H,10'H)-tetraone (4a): Pale yellow powder; M.p. > 300 oC; IR (KBr) νmax: 3290, 3283, 3087, 2958, 1708, 1658, 1505, 1375, 1245, 1106 cm-1; 1H NMR (400.13 MHz, DMSO-d6) δ: 0.92 and 1.01 (2s, 6H, 2CH3), 1.94 and 2.12 (ABq, J = 16.0 Hz, 2H, CH2), 2.60 (s, 2H, CH2), 2.98 and 3.47 (2s, 6H, 2NCH3), 6.64 (d, J = 7.6 Hz, 1Harom), 6.73 (t, J = 7.6 Hz, 1Harom), 6.88 (d, J = 7.2 Hz, 1Harom), 7.00 (t, J = 7.4 Hz, 1Harom), 8.9 (br s, 1H, NH), 10.09 (s, 1H, NH) ppm; 13C NMR (100.6 MHz, DMSO-d6) δ: 26.9, 27.9, 28.8, 30.9, 32.3, 48.9 (Cspiro), 51.0, 90.5, 108.4, 111.3, 120.8, 123.2, 127.7, 136.2, 143.9, 144.5, 150.5, 150.6, 159.7, 180.2, 193.9 ppm; MS (EI, 70 eV) m/z: 406.1 (M+); Anal. Calcd for C22H22N4O4 (406.43): C, 65.01; H, 5.46; N, 13.78%. Found: C, 65.08; H, 5.39; N, 13.71%. 1',3'-Dimethyl-8',9'-dihydro-1'H-spiro[indoline-3,5'-pyrimido[4,5-b]quinoline]-2,2',4',6'(3'H, 7'H, 10'H)-tetraone (4b): Pale yellow powder; M.p. > 300 oC; IR (KBr) νmax: 3337, 3184, 3072, 2949, 1699, 1661, 1618, 1503, 1375, 1199, 1109 cm-1; 1H NMR (400.13 MHz, DMSO-d6) δ: 1.78-1.91 (m, 2H, CH2), 2.06-2.21 (m, 2H, CH2), 2.71-2.76 (m, 2H, CH2), 2.98 and 3.48 (2s, 6H, 2NCH3), 6.62 (d, J = 7.6 Hz, 1Harom), 6.73 (t, J = 7.2 Hz, 1Harom), 6.88 (d, J = 7.2 Hz, 1Harom), 7.00 (t, J = 7.2 Hz, 1Harom), 9.05 (br s, 1H, NH), 10.8 (s, 1H, NH) ppm; 13 C NMR (100.6 MHz, DMSO-d6) δ: 21.1, 27.5, 27.9, 30.9, 37.7, 49.0 (Cspiro), 90.5, 108.2, 112.6, 120.8, 123.3, 127.6, 136.4, 143.9, 144.3, 150.6, 152.6, 159.6, 180.2, 194.0 ppm; MS (EI, 70 eV) m/z: 378.1 (M+); Anal. Calcd for C20H18N4O4 (378.38): C, 63.48; H, 4.79; N, 14.81%. Found: C, 63.52; H, 4.73; N, 14.78%. 6 5-Chloro-1',3',8',8'-tetramethyl-8',9'-dihydro-1'H-spiro[indoline-3,5'-pyrimido[4,5-b] quinoline]-2,2',4',6'(3'H,7'H,10'H)-tetraone (4c): Pale yellow powder; M.p. > 300 oC; IR (KBr) νmax: 3370, 2958, 1699, 1640, 1507, 1478, 1373, 1313, 1178 cm-1; 1H NMR (400.13 MHz, DMSO-d6) δ: 0.94 and 0.99 (2s, 6H, 2CH3), 1.99 and 2.11 (ABq, J = 16.2 Hz, 2H, CH2), 2.60 (br s, 2H, CH2), 2.96 and 3.40 (2s, 6H, 2NCH3), 6.67 (d, J = 8.0 Hz, 1Harom), 6.90 (s, 1Harom), 7.05 (d, J = 8.0 Hz, 1Harom), 9.00 (br s, 1H, NH), 10.24 (s, 1H, NH) ppm; 13C NMR (100.6 MHz, DMSO-d6) δ: 27.2, 27.7, 28.5, 30.4, 32.4, 48.7 (Cspiro), 50.9, 89.9, 109.4, 110.8, 123.3, 126.5, 127.5, 138.2, 143.0, 144.8, 150.5, 159.5, 180.0, 194.1 ppm; MS (EI, 70 eV) m/z: 440.13 (M+) and 442.1 (M+2); Anal. Calcd for C22H21ClN4O4 (440.13): C, 59.93; H, 4.80; N, 12.71%. Found: C, 59.87; H, 4.72; N, 12.79%. 5-Chloro-1',3'-dimethyl-8',9'-dihydro-1'H-spiro[indoline-3,5'-pyrimido [4,5-b] quinoline]- 2,2',4',6'(3'H,7'H,10'H)-tetraone (4d): Pale yellow powder, M.p. > 300 oC; IR (KBr) νmax: 3292, 2956, 1707, 1656, 1502, 1377, 1204, 1110 cm-1; 1H NMR (400.13 MHz, DMSO-d6) δ: 1.81-1.91(m, 2H, CH2), 2.13-2.18 (m, 2H, CH2), 2.67-2.75 (m, 2H, CH2), 2.99 and 3.47 (2s, 6H, 2NCH3), 6.63 (d, J = 8.0 Hz, 1Harom), 6.94 (d, J = 2.0 Hz, 1Harom), 7.05 (dd, J = 8.0 and 2.0 Hz, 1Harom), 9.05 (br s, 1H, NH), 10.23 (s, 1H, NH) ppm; 13C NMR (100.6 MHz, DMSO-d6) δ: 21.0, 27.5, 28.0, 31.0, 37.6, 49.4 (Cspiro), 90.0, 109.4, 112.0, 123.5, 124.7, 127.4, 138.4, 143.0, 144.6, 150.5, 153.1, 159.8, 180.0, 194.2 ppm; MS (EI, 70 eV) m/z: 412.2 (M+) and 414.1 (M+2); Anal. Calcd for C20H17ClN4O4 (412.83): C, 58.19; H, 4.15; N, 13.57%. Found: C, 58.24; H, 4.08; N, 13.63%. 7 5-Bromo-1',3'-dimethyl-8',9'-dihydro-1'H-spiro[indoline-3,5'-pyrimido[4,5-b]quinoline]2,2',4',6'(3'H,7'H,10'H)-tetraone (4e): Pale yellow powder; M.p. > 300 oC; IR (KBr) νmax: 3288, 2956, 1707, 1655, 1501, 1377, 1204, 1111 cm-1; 1H NMR (400.13 MHz, DMSO-d6) δ: 1.85 (br s, 2H, CH2), 2.15 (br s, 2H, CH2), 2.63-2.78 (m, 2H, CH2), 2.99 and 3.47 (2s, 6H, 2NCH3), 6.59 (d, J = 8.0 Hz, 1Harom), 7.05 (s, 1Harom), 7.17 (d, J = 8.0 Hz, 1Harom), 9.06 (br s, 1H, NH), 10.25 (s, 1H, NH) ppm; 13 C NMR (100.6 MHz, DMSO-d6) δ: 21.0, 27.5, 28.0, 31.0, 37.6, 49.3 (Cspiro), 90.0, 110.1, 112.0, 112.4, 126.1, 130.3, 138.8, 143.4, 144.6, 150.5, 153.2, 159.8, 180.0, 194.3 ppm; MS (EI, 70 eV) m/z: 457.0 (M+) and 459.1 (M+2); Anal. Calcd for C20H17BrN4O4 (457.28): C, 52.53; H, 3.75; N, 12.25%. Found: C, 52.61; H, 3.69; N, 12.21%. 1',3',8',8'-Tetramethyl-5-nitro-8',9'-dihydro-1'H-spiro[indoline-3,5'-pyrimido[4,5b]quinoline]-2,2',4',6'(3'H,7'H,10'H)-tetraone (4f): Brown powder; M.p. > 300 oC; IR (KBr) νmax: 3288, 3132, 2958, 1708, 1660, 1504, 1333, 1249, 1068 cm-1; 1H NMR (400.13 MHz, DMSO-d6) δ: 0.94 and 1.01 (2s, 6H, 2CH3), 2.01 and 2.10 (ABq, J = 16.0 Hz, 2H, CH2), 2.62 and 2.68 (ABq, J = 16.2 Hz, 2H, CH2), 2.98 and 3.48 (2s, 6H, 2NCH3), 6.85 (d, J = 8.4 Hz, 1Harom), 7.80 (d, J = 2.4 Hz, 1Harom), 8.05 (dd, J = 8.8 and 2.4 Hz, 1Harom), 9.16 (br s, 1H, NH), 10.92 (s, 1H, NH) ppm; 13C NMR (100.6 MHz, DMSO-d6) δ: 27.3, 28.0, 28.3, 31.0, 32.4, 40.6, 49.0 (Cspiro), 50.7, 108.2, 110.4, 118.6, 125.6, 137.2, 141.9, 145.1, 150.5, 150.8, 151.8, 160.0, 181.0, 194.4 ppm; MS (EI, 70 eV) m/z: 451.1 (M+); Anal. Calcd for C22H21N5O6 (451.43): C, 58.53; H, 4.69; N, 15.51%. Found: C, 58.46; H, 4.74; N, 15.48%. 8',8'-dimethyl-2'-thioxo-2',3',8',9'-tetrahydro-1'H-spiro[indoline-3,5'-pyrimido[4,5-b]quinoline]2,4',6'(7'H,10'H)-trione (4j): 8 Yellow powder; M.p. > 300 oC; IR (KBr) νmax: 3318, 3198, 3104, 2957, 1662, 1619, 1568, 1512, 1375, 1182, 1053 cm-1; 1H NMR (400.13 MHz, DMSO-d6) δ: 0.92 and 1.00 (2s, 6H, 2CH3), 1.93 and 2.11 (ABq, J = 15.6 Hz, 2H, CH2), 2.40 (s, 2H, CH2), 6.63-7.02 (4Harom), 8.70, 10.14, 11.72 and 12.07 (4s, 4H, 4NH) ppm; 13 C NMR (100.6 MHz, DMSO-d6) δ: 26.9, 28.6, 32.4, 47.7 (Cspiro), 51.0, 94.0, 108.5, 110.7, 121.1, 123.2, 127.9, 135.8, 143.7, 144.0, 149.8, 159.0, 173.7, 179.5, 193.7 ppm; MS (EI, 70 eV) m/z: 394.1 (M+); Anal. Calcd for C20H18N4O3S (394.45): C, 60.90; H, 4.60; N, 14.20; S, 8.13%. Found: C, 60.98; H, 4.56; N, 14.27; S, 8.06%. 1 H NMR and 13C NMR spectra for compounds 4a-j 9 Figure S5. 1H NMR spectrum (400 MHz, DMSO-d6) of 4a 10 Figure S6. 13C NMR spectrum (100 MHz, DMSO-d6) of 4a 11 Figure S7. 1H NMR spectrum (400 MHz, DMSO-d6) of 4b 12 Figure S8. 13C NMR spectrum (100 MHz, DMSO-d6) of 4b 13 Figure S9. 1H NMR spectrum (400 MHz, DMSO-d6) of 4c 14 Figure S10. 13C NMR spectrum (100 MHz, DMSO-d6) of 4c 15 Figure S11. 1H NMR spectrum (400 MHz, DMSO-d6) of 4d 16 Figure S12. 13C NMR spectrum (100 MHz, DMSO-d6) of 4d 17 Figure S13. 1H NMR spectrum (400 MHz, DMSO-d6) of 4e 18 Figure S14. 13C NMR spectrum (100 MHz, DMSO-d6) of 4e 19 Figure S15. 1H NMR spectrum (400 MHz, DMSO-d6) of 4f 20 Figure S16. 13C NMR spectrum (100 MHz, DMSO-d6) of 4f 21 Figure S17. 1H NMR spectrum (400 MHz, DMSO-d6) of 4g 22 Figure S18. 13C NMR spectrum (100 MHz, DMSO-d6) of 4g 23 Figure S19. 1H NMR spectrum (400 MHz, DMSO-d6) of 4h 24 Figure S20. 13C NMR spectrum (100 MHz, DMSO-d6) of 4h 25 Figure S21. 1H NMR spectrum (400 MHz, DMSO-d6) of 4i 26 Figure S22. 13C NMR spectrum (100 MHz, DMSO-d6) of 4i 27 Figure S23. 1H NMR spectrum (400 MHz, DMSO-d6) of 4j 28 Figure S24. 13C NMR spectrum (100 MHz, DMSO-d6) of 4j 29
© Copyright 2026 Paperzz