Linear Systems Pivoting in Gaussian Elim. CSE 541 Roger Crawfis Limitations of Gaussian Elimation The naïve implementation of Gaussian Elimination is not robust and can suffer from severe round-off errors due to: Dividing by zero Dividing by small numbers and adding. Both can be solved with pivoting Partial Pivoting What if at step i, Aii = 0? Simple Fix: If A = 0 Find A 0 j > i Swap Row j with i ii ji Factored Portion Aii A ji Row i Row j Example – Partial Pivoting 1.25 104 1.25 x1 6.25 x 75 12 . 5 12 . 5 2 Forward Elimination 6.25 1.25 104 x1 1.25 5 5 x 75 6 . 25 10 0 12 . 5 1 . 25 10 2 x1 1.0001 x 4 . 9999 2 5 digits Example – Partial Pivoting 1.25 104 1.25 x1 6.25 x 75 12 . 5 12 . 5 2 Forward Elimination x1 1.0001 x 4 . 9999 2 5 digits 6.25 1.25 104 x1 1.25 75 6.25 105 5 x 0 12.5 1.25 10 2 Rounded to 3 digits 1.25 104 0 x1 6.25 5 5 1.25 10 x2 6.25 10 1.25 x1 0 x 2 3digits 5 Better Pivoting Partial Pivoting to mitigate round-off error If | Aii | < max | Aji | j i Swap row i with arg (max | Aij |) j i Avoids Small Multipliers Adds an O(n) search. Partial Pivoting swap 1.25 104 1.25 x1 6.25 12.5 x2 75 12.5 12.5 x1 75 12.5 1.25 104 1.25 x 6.25 2 Forward Elimination 12.5 75 12.5 x1 0 1.25 12.5 105 x 6.25 75 105 2 Rounded to 3 digits 12.5 12.5 x1 75 0 1.25 x 6.25 2 x1 1 x 2 3digits 5 Pivoting strategies k Partial Pivoting: Complete (Full) Pivoting Only row interchange k Threshold Pivoting k Row and Column interchange k Only if prospective pivot is found to be smaller than a certain threshold Pivoting With Permutations Adding permutation matrices in the mix: M n1Pn1M n2 Pn2 M1P1 Ax M n1Pn1M n2 Pn2 M1P1b However, in Gaussian Elimination we will only swap rows or columns below the current pivot point. This implies a global reordering of the equations will work: MPAx MPb MAx b Pivoting Again, the pivoting is strictly a function of the matrix A, so once we determine P it is trivial to apply it to many problems bk. For LU factorization we have: LU = PA Ly = Pb Ux = y
© Copyright 2026 Paperzz