International Mathematical Forum, 4, 2009, no. 22, 1091 - 1103 Joint Distribution of any Record Value and an Order Statistics Cihan Aksop Gazi University, Department of Statistics 06500 Teknikokullar, Ankara, Turkey [email protected] Salih Çelebioğlu Gazi University, Department of Statistics 06500 Teknikokullar, Ankara, Turkey [email protected] Abstract Let X1 , X2 , . . . , Xn be a random sample drawn from an absolutely continuous distribution function F . Let X1:n < X2:n < · · · < Xn:n be the order statistics and Yp , p ≥ 1 be the record values of this random sample. In this study, the joint distribution of a record value Yp and an order statistic Xr:n is given. Mathematics Subject Classification: 62H10 Keywords: Order statistics, record values, record times 1 Introduction Let X1 , X2 , . . . , Xn be a random sample drawn from an absolutely continuous distribution function F and let (a, b) be the support of F with −∞ ≤ a < b ≤ ∞. Then record times and the record values are defined respectively by L (1) = 1, Y1 = X1 L (n + 1) = min j : j > L (n) , Xj > XL(n) Yn = XL(n) (n ≥ 1) . The record statistics and the order statistcs are frequently used so as to characterize some distribution functions. Nagaraja and Nevzorov (1997) [8] 1092 Cihan Aksop and Salih Çelebioğlu are interested in the distribution of Y2 given X2:2 and thus obtained a characterization of the exponential distribution. Su et al. (2008) [10] dealt with the distribution of Y1 given Xn:n while Balakrishnan and Stepanov (2004) [3] are interested in the distribution of Y2 given Xn:n . The results by Ahsanullah (1979) [1], Balakrishnan and Balasubramanian (1995) [2], Gupta (1978) [4], Huang (1975) [5], Kirmani (1984) [6], Nagaraja (1977) [7] and Nevzorov (2000) [9] are some other studies obtained in similar context. In this study, the joint distribution of Xr:n and Yp , p ≥ 1 are examined. 2 The joint distribution of Xr:n and Yp Let b > yp > yp−1 > · · · > y1 > y0 = a, b ≤ x ≤ x and examine the probability P {Yp = yp , Xr:n = x} for the cases yp < x, y = x and yp > x separately. 1) yp < x ⇒ L (p) < r. Hence we have P {Yp = yp , Xr:n = x, L (p) = kp , Yp−1 = yp−1 , L (p − 1) = kp−1 , . . . , Y2 = y2 , L (2) = k2 , Y1 = y1 } = P {X1 = y1 , X2 < y1 , . . . , Xk2 −1 < y1 , Xk2 = y2 , Xk2 +1 < y2 , . . . . . . , Xkp−1 −1 < yp−2 , Xkp−1 = yp−1 , Xkp−1 +1 < yp−1 , . . . , Xkp −1 < yp−1 , Xkp = yp , Xr−kp :n−kp = x = p−1 f (yi ) F ki+1 −ki −1 (yi ) f (yp ) P Xr−kp :n−kp = x i=1 p−1 = f (yi ) F ki+1 −ki −1 (yi ) f (yp ) i=1 (n − kp )! F r−kp −1 (x) (r − kp − 1)! (n − r)! × [1 − F (x)]n−r f (x) ⇒ P {Yp = yp , Xr:n = x, L (p) = kp , L (p − 1) = kp−1 , . . . , L (2) = k2 } yp yp−1 y2 (n − kp )! F r−kp −1 (x) [1 − F (x)]n−r f (x) = ··· (r − k − 1)! (n − r)! p a a a p−1 f (yi) F ki+1 −ki −1 (yi) f (yp ) dy1 · · · dyp−2 dyp−1 × i=1 = (n − kp )! F r−kp −1 (x) [1 − F (x)]n−r f (x) (r − kp − 1)! (n − r)! p 1 kp −1 (yp ) f (yp ) ×F k −1 i=2 i 1093 Record values and order statistic ⇒ P {Yp = yp , Xr:n = x} = kp −1 r−1 ··· kp =p kp−1 =p−1 ×F r−kp −1 n−r (x) [1 − F (x)] f (x) F k 3 −1 k2 =2 kp −1 (n − kp )! (r − kp − 1)! (n − r)! (yp ) f (yp ) p i=2 = 1 ki − 1 r−1 kp (n − kp )! 1 F r−kp −1 (x) [1 − F (x)]n−r f (x) kp − 1 (r − kp − 1)! (n − r)! =p ×F kp −1 (yp ) f (yp ) ζ (p, kp ) where ζ (p, kp ) is a function independent of the distribution function and defined by kp −1 ζ (p, kp ) = ··· kp−1 =p−1 p−1 k 3 −1 k2 i=2 1 . ki − 1 The following Table 1 gives the values of the function ζ (p, kp ) corresponding to some p and kp values. These values can be obtained by the Octave program code given in Appendix-1. 4 3 1,5000 4 5 6 7 8 9 10 5 6 1,8333 2,0833 1,0000 1,4583 0,4167 7 2,2833 1,8750 0,7083 0,1250 8 2,4500 2,2556 1,0208 0,2431 0,0292 Table 1. Some values of ζ (p, kp ) 2) The case yp = x. We have 9 2,5929 2,6056 1,3431 0,3889 0,0639 0,0056 10 2,7179 2,9297 1,6687 0,5568 0,1125 0,0135 0,0009 11 2,8290 3,2316 1,9943 0,7422 0,1744 0,0260 0,0024 0,0001 12 2,9290 3,5145 2,3174 0,9416 0,2486 0,0435 0,0050 0,0004 13 3,0199 3,7808 2,6369 1,1523 0,3342 0,0661 0,0090 0,0008 14 3,1032 4,0325 2,9520 1,3720 0,4302 0,0939 0,0145 0,0016 15 3,1801 4,2712 3,2622 1,5991 0,5357 0,1270 0,0217 0,0027 1094 Cihan Aksop and Salih Çelebioğlu P {Yp = x, Xr:n = x, L (p) = kp , Yp−1 = yp−1 , L (p − 1) = kp−1 , . . . , Y2 = y2 , L (2) = k2 , Y1 = y1 } = P {X1 = y1 , X2 < y1 , . . . , Xk2 −1 < y1 , Xk2 = y2 , Xk2 +1 < y2 , . . . . . . Xkp−1 −1 < yp−2 , Xkp−1 = yp−1 , Xkp−1 +1 < yp−1 , . . . , Xkp −1 < yp−1 Xkp = x, Xr−kp :n−kp = x = p−1 f (yi ) F ki+1 −ki −1 (yi ) P Xr−(kp −1):n−(kp −1) = x i=1 p−1 = f (yi ) F ki+1 −ki −1 (yi ) i=1 (n − kp + 1)! [1 − F (x)]r−kp F n−r (x) f (x) (r − kp )! (n − r)! ⇒ P {Yp = x, Xr:n = x, L (p) = kp , L (p − 1) = kp−1 , . . . , L (2) = k2 } y2 x yp−1 (n − kp + 1)! ··· [1 − F (x)]r−kp F n−r (x) f (x) = (r − kp ) 1 (n − r)! a a a p−1 × f (yi ) F ki+1 −ki −1 (yi ) dy1 · · · dyp−2 dyy−1 i=1 p 1 (n − kp + 1)! r−kp n−r+kp −1 [1 − F (x)] = F (x) f (x) (r − kp )! (n − r)! k −1 i=2 i ⇒ P {Yp = x, Xr:n = x} = r kp −1 ··· kp =p kp−1 =p−1 × [1 − F (x)]r−kp F n−r+kp −1 (x) f (x) = r kp k 3 −1 k2 p i=2 (n − kp + 1)! (r − kp )! (n − r)! =2 1 ki − 1 (n − kp + 1)! 1 [1 − F (x)]r−kp F n−r+kp −1 (x) f (x) ζ (p, kp ) . kp − 1 (r − kp )! (n − r)! 3) The case yp > x. In addition, let yt < x and yt+1 ≥ x be satisfied for a t = 0, 1, . . . , p − 1. Let us call any nonrecord observation as an ordinary value. In the case we have Record values and order statistic 1095 P {Yp = yp , Xr:n = x, L (p) = kp , Yp−1 = yp−1 , L (p − 1) = kp−1 , . . . , Y2 = y2 , L (2) = k2 , Y1 = y1 } = P {X1 = y1 , X2 < y1 , . . . , Xk2 −1 < y1 , Xk2 = y2 , Xk2 +1 < y2 , . . . , Xkt −1 < yt−1 , Xkt = yt , Xkt +1 < yt , . . . , Xkt+1 −1 < yt , Xkt+1 = yt+1 − Xkt+1 +1 < yt+1 , . . . , Xkp −1 < yp−1 , Xkp = yp , Xr:n = x t f (yi ) F ki+1 −ki −1 (yi ) = i=1 ×P Xkt+1 = yt+1 , Xkt+1 +1 < yt+1 , . . . , Xkp −1 < yp−1 , Xkp = yp , Xr−(kt+1 −1):n−(kt+1 −1) = x . Now, let us consider the probability in the last equation closely. If we call the ordinary values between two successive record values as ”the set of ordinary values”, then we have p −t−1 sets of ordinary values in the examined probability. Let the numbers of values greater than x in these sets of ordinary values be i1 , i2 , . . . , ip−t−1 , respectively. For the sake of simple notation, let I = (i1 , i2 , . . . , ip−t−1 ) and J be the set of indices for the random variables with the ordinary values. Thus the examined probability can be partitioned into three parts as follows P Xkt+1 = yt+1 , Xkt+1 +1 < yt+1 , . . . , Xkp −1 < yp−1 , Xkp = yp , Xr−(kt+1 −1):n−(kt+1 −1) = x P Xkt +1 = yt+1 , Xkt+1 +1 < yt+1 , . . . , Xkp −1 < yp−1 , Xkp = yp , = I∈I1 Xr−(kt+1 −1):n−(kt+1 −1) = x P Xkt+1 = yt+1 , Xkt+1 +1 < yt+1 , . . . , Xkp −1 < yp−1 , + I∈I2 j∈J Xkp = yp , Xkp = yp , Xr−(kt+1 −1):n−(kt+1 −1) = x, Xj = x P Xkt+1 = x, Xkt+1 +1 < x, . . . , Xkp −1 < yp−1 , Xkp = yp , + I∈I3 Xr−(kt+1 −1):n−(kt+1 −1) = x where (1) 1096 Cihan Aksop and Salih Çelebioğlu p−t−1 (i1 , i2 , . . . , ip−t−1 ) | max {0, kp − r − p + t} ≤ I1 = ij j=1 ≤ min {kp − kt+1 + 1, n − r} − (p − t)} p−t−1 (i1 , i2 , . . . , ip−t−1 ) | max {0, kp − r − p + t − 1} ≤ I2 = ij j=1 I3 = ≤ min {kp − kt+1 , n − r} − (p − t)} p−t−1 (i1 , i2 , . . . , ip−t−1 ) | max {0, kp − r − p + t} ≤ ij j=2 ≤ min {kp − kt+2 + 1, n − r} − (p − t − 1)} . In this partition, the first sum represents the case where none of the ordinary and record values are not equal to x while the second sum points out the case random variable indexed by j of ordinary values is equal to x. The last sum denotes the case where one of therecord values is equal to x, and is p−t−1 ij and examine these sums, only possible for t < p − 1. Define Ikt = j=k respectively: the first sum gives P Xkt+1 = yt+1 , Xkt+1 +1 < yt+1 , . . . , Xkp −1 < yp−1 , Xkp = yp , I∈I1 Xr−(kt+1 −1):n−(kt+1 −1) = x p−1 kj+1 − kj − 1 f (yj ) [F (yj ) − F (x)]ij−t F kj+1 −kj −1−ij−t (x) = ij−t I∈I1 j=t+1 ×f (yp ) P Xr−kp +p−t+I1t :n−kp = x p−1 kj+1 − kj − 1 f (yj ) [F (yj ) − F (x)]ij−t f (yp ) = ij−t I∈I1 j=t+1 × (n − kp )! F r−kt+1 (x) (r − kp + p − t + I1t − 1)! (n − r − p + t − I1t )! t × [1 − F (x)]n−r−p+t−I1 f (x) and the second sum gives 1097 Record values and order statistic P Xkt+1 = yt+1 , Xkt+1 +1 < yt+1 , . . . , Xkp −1 < yp−1 , Xkp = yp , I∈I2 j∈J Xr−(kt+1 −1):n−(kt+1 −1) = x, Xj = x p (kt+2 − kt+1 − 1)! = f (yz ) (kt+2 − kt+1 − i1 − 2)!i1 ! I∈I z=t+1 2 i1 kt+2 −kt+1 −i1 −2 (x) f (x) × [F (yt+1 ) − F (x)] F kt+3 − kt+2 − 1 i2 kt+3 −kt+2 −1−i2 [F (yt+2 ) − F (x)] F (x) · · · × i2 kp − kp−1 − 1 [F (yp−1 ) − F (x)]ip−t−1 × ip−t−1 × F kp −kp−1 −1−ip−t−1 (x) kt+2 − kt+1 − 1 i1 kt+2 −kt+1 −i1 −1 + (x) [F (yt+1 ) − F (x)] F i1 (kt+3 − kt+2 − 1)! × [F (yt+2 ) − F (x)]i2 (kt+3 − kt+2 − i2 − 2)!i2 ! × F kt+3 −kt+2 −i2 −2 (x) f (x) × · · · kp − kp−1 − 1 × [F (yp−1 ) − F (x)]ip−t−1 ip−t−1 × F kp −kp−1 −1−ip−t−1 (x) + · · · t t n − kp × F r−kp +p−t+I1 (x) [1 − F (x)]n−r−p+t−I1 . t r − kp + p − t + I1 Defining Bul = 1 ,u = 1 0 , otherwise the second sum can be written in the following form = p−t−1 p−t−1 I∈I2 u=1 l=1 (kt+l+1 − kt+1 − 1)! f (yt+l ) (kt+l+1 − kt+l − il − 1 − Bul )!il ! × [F (yt+l ) − F (x)]il f (yp ) t n − kp F r−kt+1 (x) [1 − F (x)]n−r−p+t−I1 f (x) . × t r − kp + p − t + I1 For the last sum, it is obvious that 1098 Cihan Aksop and Salih Çelebioğlu p−1 f (yj ) I∈I3 j=t+2 × kj+1 − kj − 1 ij−t [F (yj ) − F (x)]ij−t f (yp ) (n − kp + 1)! F r−kt+1 −1 (x) (r − kp + p − t + I2t − 1)! (n − r − p + t − I2t + 1)! t × [1 − F (x)]n−r−p+t−I2+1 f (x) . On the other hand, it is also satisfied that P {Yp = yp , Xr:n = x, L (p) = kp , L (p − 1) , kp−1 , . . . , L (2) = k2 } yt+2 x yt y2 p−1 yp t = ··· ··· f (yi ) F ki+1 −ki −1 (yi ) t=0 x x a a a i=1 ×P Xkt+1 = yt+1 , Xkt+1 +1 < yt+1 , . . . , Xkp −1 < yp−1 , Xkp = yp , Xr−(kt+1 −1):n−(kt+1 −1) = x dy1 dy2 · · · dyt dyt+1 · · · dyp−1 yt+2 p−1 yp t+1 1 = ··· F kt+1 −1 (x) k − 1 i x t=0 x i=2 ×P Xkt+1 = yt+1 , Xkt+1 +1 < yt+1 , . . . , Xkp −1 < yp−1 , Xkp = yp , Xr−(kt+1 −1):n−(kt+1 −1) = x dyt+1 · · · dyp−1 . Partition the integral under the last sum into three parts exactly as in (1) 1 kt+1 −1 without considering the coefficient t+1 (x) for one moment and i=2 ki −1 F evaluate each part separately: yp x ··· x yt+2 p−1 kj+1 − kj − 1 f (yj ) [F (yj ) − F (x)]ij−t ij−t I∈I1 j=t+1 ×f (yp ) dyt+1 · · · dyp−1 (n − kp )! F r−kt+1 (x) × t t (r − kp + p − t + I1 − 1)! (n − r − p + t − I1 )! t × [1 − F (x)]n−r−p+t−I1 f (x) . Making the transformation F (yj ) − F (x) = uj , j = t + 1, . . . , p gives y +1 F (y )−F (x) u f (yj ) dyj = duj and |xj → |0 j+1 = |0 j+1 , and results 1099 Record values and order statistic p−t−1 p−1 t 1 kj+1 − kj − 1 = [F (yp ) − F (x)]I1 +p−t−1 f (yp ) k ij−t l=1 il + k I∈I1 j=t+1 k=1 × (n − kp )! F r−kt+1 (x) (r − kp + p − t + I1t − 1)! (n − r − p + t − I1t )! t × [1 − F (x)]n−r−p+t−I1 f (x) p−1 t 1 kj+1 − kj − 1 = [F (yp ) − F (x)]I1 +p−t−1 f (yp ) j−t ij−t il + j − t l=1 I∈I1 j=t+1 × (n − kp )! F r−kt+1 (x) t t (r − kp + p − t + I1 − 1)! (n − r − p + t − I1 )! t × [1 − F (x)]n−r−p+t−I1 f (x) . The evaluation of second integral is as follows: yp x ··· yt+2 x p−t−1 p−t−1 I∈I2 u=1 l=1 il (kt+l+1 − kt+l − 1)! f (yt+l ) (kt+l+1 − kt+l − il − 1 − Bul )!il ! × [F (yt+l ) − F (x)] f (yp ) dyt+1 · · · dyp−1 t n − kp × F r−kt+1 (x) [1 − F (x)]n−r−p+t−I1 f (x) t r − kp + p − t + I1 = p−t−1 p−t−1 I∈I2 u=1 l=1 p−t−1 × k=1 × = k t (kt+l+1 − kt+l − 1)! [F (yp ) − F (x)]I1 +p−t−1 (kt+l+1 − kt+l − il − 1 − Bul )!il ! 1 j=1 ij +k f (yp ) n − kp r − kp + p − t + I1t p−t−1 p−t−1 I∈I2 u=1 l=1 t F r−kt+1 (x) [1 − F (x)]n−r−p+t−I1 1 (kt+l+1 − kt+l − 1)! l (kt+l+1 − kt+l − il − 1 − Bul )!il ! j=1 ij + l t × [F (yp ) − F (x)]I1 +p−t−1 f (yp ) t n − kp F r−kt+1 (x) [1 − F (x)]n−r−p+t−I1 −1 f (x) × t r − kp + p − t + I1 p−t−1 p−t−1 t [F (yp ) − F (x)]I1 +p−t−1 (kt+l+1 − kt+l − 1)! = l (kt+l+1 − kt+l − il − 1 − Bul )!il ! j=1 ij + l I∈I2 u=1 l=1 t n − kp ×f (yp ) F r−kt+1 (x) [1 − F (x)]n−r−p+t−I1 f (x) . t r − kp + p − t + I1 1100 Cihan Aksop and Salih Çelebioğlu The evaluation of last integral is similar to the first integral which results p−1 t 1 kj+1 − kj − 1 [F (yp ) − F (x)]I2 +p−t−1 f (yp ) j−t ij−t il + j − t l=2 I∈I3 j=t+2 × (n − kp + 1)! F r−kt+2 (x) t t (r − kp + p − t + I2 − 1)! (n − r − p + t − I2 + 1)! t × [1 − F (x)]n−r−p+t−I2 f (x) . Thus in the case yp > x , we have P {Yp = yp , Xr:n = x, L (p) = kp , L (p − 1) = kp−1 , . . . , L (2) = k2 } p−1 t+1 1 = F kt+1 −1 (x) k −1 t=0 i=2 i p−1 I t +p−t−1 kj+1 − kj − 1 [F (yp ) − F (x)] 1 f (yp ) × j−t ij−t l=1 il + j − t I∈I1 j=t+1 × (n − kp )! F r−kt+1 (x) (r − kp + p − t + I1t − 1)! (n − r − p + t − I1t )! t + × [1 − F (x)]n−r−p+t−I1 f (x) p−t−1 p−t−1 (kt+l+1 − kt+l − 1)! I∈I2 u=1 l=1 (kt+l+1 − kt+l − il − 1 − Bul )!il ! t [F (yp ) − F (x)]I1 +p−t−1 f (yp ) × l j=1 ij + l n − kp n−r−p+t−I1t r−kt+1 (x) [1 − F (x)] f (x) × F r − kp + p − t + I1t + p−2 t+1 1 F kt+1 −1 (x) k − 1 i t=0 i=2 kj+1 − kj − 1 [F (yp ) − F (x)]I2t +p−t−1 p−1 f (yp ) × j−t ij−t il + j − t l=2 I∈I3 j=t+2 × (n − kp + 1)! F r−kt+2 (x) t t (r − kp + p − t + I2 − 1)! (n − r − p + t − I2 + 1)! t × [1 − F (x)]n−r−p+t−I2 f (x) . Hence in the case yp > x ,we have the joint distribution of pth record value 1101 Record values and order statistic Yp , and rth order statistic Xr:n as follows: P {Yp = yp , Xr:n = x} = kp n ··· kp =p kp−1 =p−1 p−1 t+1 k3 k2 =2 t=0 i=2 1 F kt+1 −1 (x) ki − 1 p−1 I t +p−t−1 kj+1 − kj − 1 [F (yp ) − F (x)] 1 × f (yp ) j−t ij−t il + j − t l=1 I∈I1 j=t+1 × (n − kp )! F r−kt+1 (x) (r − kp + p − t + I1t − 1)! (n − r − p + t − I1t )! t × [1 − F (x)]n−r−p+t−I1 f (x) p−t−1 p−t−1 (kt+l+1 − kt+l − 1)! t [F (yp ) − F (x)]I1 +p−t−1 + f (yp ) l (k − k − i − 1 − B )!i ! t+l+1 t+l l ul l i + l j j=1 I∈I2 u=1 l=1 n − kp n−r−p+t−I1t r−kt+1 (x) [1 − F (x)] f (x) × F r − kp + p − t + I1t + n kp kp =p kp−1 =p−1 ··· p−2 t+1 k3 k2 t=0 i=2 1 F kt+1 −1 (x) ki − 1 kj+1 − kj − 1 [F (yp ) − F (x)]I2t +p−t−1 × f (yp ) j−t ij−t il + j − t p−1 l=2 I∈I3 j=t+2 × (n − kp + 1)! F r−kt+2 (x) (r − kp + p − t + I2t − 1)! (n − r − p + t − I2t + 1)! t × [1 − F (x)]n−r−p+t−I2 f (x) . 3 Appendix 1. Octave Code for Calculating ζ (p, kp) Define the values of p and k (p) for which ζ (p, k (p)) is to be calculated. toplam in the last line is the value of ζ (p, k (p)). # p= # k(p)= for i=2:p-1 k(i)=i; end toplam=0; 1102 Cihan Aksop and Salih Çelebioğlu devam=1; i=1; while (i<p) carpim=1; for j=2:p-1 carpim=carpim*1/(k(j)-1); end toplam=toplam+carpim; i=2; while (i<p) k(i)=k(i)+1; if (k(i)>k(i+1)-1) k(i)=i; i=i+1; else break end end end toplam References [1] M. Ahsanullah, Characterization of exponential distribution by record values, Sankhya, Ser. B 41 (1979) 116–121. [2] N. Balakrishnan, K. Balasubramanian, A characterization of geometric distribution based on record values, Journal of Applied Statistical Science 2 (1995) 233-248. [3] N. Balakrishnan, A. Stepanov, Two characterizations based on order statistics and records, Journal of Statistical Planning and Inference 124 (2004) 273–287. [4] R. C. Gupta, Relations between order statistics and record values and some characterization results, Journal of Applied Probability 21 (1984) 425–430. [5] J. S. Huang, Characterization of distributions by the expected values of order statistics, Annals of Institute Statistical Mathematics 27 (1975) 87– 93. [6] S. N. U. A. Kirmani, M. I. Beg, On characterization of distributions by expected records, Sankhya, Ser. A 46 (1984) 463–465. Record values and order statistic 1103 [7] H. N. Nagaraja, On a characterization based on record values, Australia Journal of Statistics 19 (1977) 70–73. [8] H. N. Nagaraja, V. B. Nevzorov, On characterizations based on record values and order statistics, Journal of Statistical Planning and Inference 63 (1997) 271–284. [9] V. B. Nevzorov, A characterization of exponential distributions by correlations between records. Mathematical Methods in Statistics 1 (1992) 49–54. [10] J. Su, N. Su, W. Huang, Characterizations based on record values and order statistics. Journal of Statistical Planning and Inference 138 (2008) 1358–1367. Received: September, 2008
© Copyright 2026 Paperzz