In silico structural studies of biological molecules Supercomputing challenges & requirements Emiliano De Santis, Giovanni La Penna, Velia Minicozzi, Silvia Morante, Giancarlo Rossi, Francesco Stellato Dipartimento di Fisica & I.N.F.N. Roma Tor Vergata 2018-2020 Large scale computing @ 2018-2020 Large Scale Computing @ INFN Roma, February 13th , 2017 Outline -- Structural Biology & HPC - Protein aggregation Neurodegenerative diseases - Antibody-protein interactions Tumour theranostic - Ab initio observables calculations X-ray spectra Diffraction patterns -- Computational Requirements - Challenges & needs for 2018-2020 Classical MD Ab initio calculations 2018-2020 Large Scale Computing @ INFN Roma, February 13th , 2017 Classical Molecular Dynamics Antibody-ligand Fibril formation 5.000 (protein) + 150.000 (water) atoms 1000 (protein) + 100.000 (water) atoms 500 ns (MD simulations) > 100 ns (MD simulations) Software: GROMACS, LAMMPS Sevigny et al. Nature 537 (2016) Minicozzi et al. JBC 289 (2014); Carbonaro et al. BBA 1864 (2016) De Santis et al. J Phys Chem B 119 (2105); Stellato et al. EBJ 43 (2014) 2018-2020 Large Scale Computing @ INFN Roma, February 13th , 2017 Ab initio calculations Metal ions–peptides interactions MD simulations on fragments of fibril-forming peptides (Aβ, prion) 100 (protein) + 500 (water) atoms Giannozzi et al. Metallomics 4 (2012) Software: QuantumESPRESSO 2018-2020 Large Scale Computing @ INFN Roma, February 13th , 2017 Ab initio observable calculation X-ray Absorption spectrum Final state with a core-hole Initial state Incident photon no core-hole energy X-ray Diffraction pattern Charge density of crystalline molecules calculated using Density Functional Theory can be compared with experimental data 2 2 Ze 2 i E i 2m r 2 2 V f E f 2m Density Functional Theory provides an accurate description of the atomic potential La Penna et al. J Chem Phys 143 (2015) Stellato et al. IUCrJ 1 (2014) 2018-2020 Large Scale Computing @ INFN Roma, February 13th , 2017 HPC Challenges for 2018-2020 Classical MD on systems with > 106 atoms - Many A peptides aggregation and interaction with small molecules - Antibodies interaction with A peptides and tumour proteins >107 core hours QM simulations of systems with up to 1000-2000 atoms - A few A1-40 peptides (400 atoms, 1200 electrons) in complex with Cu(II) in a water environment - XAS and XRD data calculation 108 core hours 2018-2020 Large Scale Computing @ INFN Roma, February 13th , 2017 HPC Requirements QuantumESPRESSO tests DFT PW calculation on a 77 atoms system Galileo 8x16 cores = 128 cores = 7.4 s/step Marconi A2 2x68 cores = 136 cores = 15.8 s/step The key factor is the CPU clock Marconi A2 @ 1.4 GHz, Galileo @ 2.4 GHz Marconi A2 runs 2 times slower than Galileo Machine desiderata Core hours: 107 CPU: > 2.4 GHz RAM: > 100 GB/node Hard-Disk Space: > 100 TB 2018-2020 Large Scale Computing @ INFN Roma, February 13th , 2017 People • Prof. Silvia Morante • Prof. Giancarlo Rossi • Dr. Velia Minicozzi • Dr. Francesco Stellato • Dr. Emiliano De Santis • Dr. Giovanni La Penna The Biophysics Group in Tor Vergata http://biophys.roma2.infn.it/ Large Scale Computing @ INFN Roma, February 13th , 2017 Thank you for the attention! ??? 2018-2020 Questions ???
© Copyright 2026 Paperzz