Linear response theory and neutrino mean free path in infinite nuclear matter A. Pastore1 , D. Davesne2 ,J. Navarro3 and J.W. Holt4 1 University 2 3 of York, Heslington YO10 5DD Université de Lyon, F-69003 Lyon, France IFIC (CSIC University of Valencia), Apdo. Postal 22085, E-46071 Valencia 4 Texas A&M, College Station, TX Trento, May 2016 Outline 1 Introduction 2 Landau theory of Fermi liquids 3 Linear response theory with Skyrme functionals 4 Neutrino mean free path 5 Conclusions A.Pastore (York) Linear response 2 / 29 Outline 1 Introduction 2 Landau theory of Fermi liquids 3 Linear response theory with Skyrme functionals 4 Neutrino mean free path 5 Conclusions A.Pastore (York) Linear response 3 / 29 Infinite nuclear matter (Hartree-Fock) Main features Pure Neutron Matter EoS Ideal system made of neutron and protons 35 No Coulomb 30 25 Iτ = ρ1 ρ0 Iσ = s0 ρ0 Iτ σ = E/N [MeV] plane-waves s1 ρ0 20 15 BSk17 BSk18 BSk19 BSk20 BSk21 LNS1 SLy4 CBF 10 5 0 0 0.05 0.1 0.15 0.2 0.25 -3 ρ [fm ] Effective interactions (functionals) Correlations are hidden in the coupling constants! A.Pastore (York) Linear response 4 / 29 RPA formalism We act with an external field on an infinite medium X expiqr Θjα Θjα = 1, σ j , τ̂ j , σ j τ̂ j j The RPA correlated Green function is the solution of Bethe-Salpeter equation (S,M,I) GRP A (q, ω, k1 ) = GHF (q, ω, k1 ) + GHF (q, ω, k1 ) X Z d3 k2 S,M,I;S’,M’,I’ V (q, k1 , k2 )GS’,M’,I’ RP A (q, ω, k2 ) (2π)3 ph S’,M’,I’ The response function is now defined as α SRP A (q, ω) = g − = π Z d3 k1 α GRP A (q, ω, k1 ) (2π)3 g = 4 is the degeneracy of SNM. Results We have generalized the formalism to include temperature effects [D. Davesne, A. P. and J. Navarro, Phys.Rev. C 89, 044302, (2014)]; [A. P., D. Davesne, Y. Lallouet, M. Martini , K. Bennaceur and J. Meyer, Phys. Rev. C 85, 054317 (2012)]; [A. P. , M. Martini, V. Buridon, D. Davesne, K. Bennaceur and J. Meyer, Phys. Rev. C 86, 044308 (2012)]. Excited States Linear response theory to describe excited states in IM The exchange term is the difficult one! Different approximations 1 Landau (static) q1 = q2 = kF and q, ν ≈ ω/q = 0 2 Landau (dynamic) q1 = q2 = kF and q = 0 3 Landau (extended) q1 = q2 = kF and q = 0 (only for Vph ) 4 RPA (complete) q1 , q2 , q (arbitrary asymmetry at T 6= 0) A.Pastore (York) Linear response 6 / 29 Excited States All the details/derivations.... A.Pastore (York) Linear response 7 / 29 Outline 1 Introduction 2 Landau theory of Fermi liquids 3 Linear response theory with Skyrme functionals 4 Neutrino mean free path 5 Conclusions A.Pastore (York) Linear response 8 / 29 Landau theory of Fermi liquids Ground State 1 infinite nuclear system (symmetric or pure neutron matter) 2 weakly interacting quasi-particles long-lived around Fermi surface Excited states 1 Landau parameters are universal (phenomenological or ab − initio) 2 (simple) residual interaction among quasi-particles as X Vph = fl + fl0 τ1 τ2 + gl + gl0 τ1 τ2 σ1 σ2 Pl (k̂1 · k̂2 ) l 3 residual tensor interaction: S12 (k12 ), S12 (P12 ), A12 (k12 , P12 ) Extra Landau parameters [A. Schwenck and B. Friman, Phys. Rev. Lett. 92, 8 (2004) ] Coupling between tensor relative and center of mass motion: Hl , Kl , Ll A.Pastore (York) Linear response 9 / 29 Chiral Effective Field Theory (χ-EFT) (J.W. Holt) The most general residual interaction reads Vph = f (θ12 ) + g(θ12 ) σ1 · σ2 + h̃(θ12 ) + k̃(θ12 ) k212 S12 (k̂12 ) kF2 P212 k12 · P12 l(θ12 ) S12 (P̂12 ) + ˜ A12 (k̂12 , P̂12 ). kF2 kF2 Tensor terms S12 (k̂12 ) = 3(k̂12 · σ1 )(k̂12 · σ2 ) − σ1 · σ2 . S12 (P̂12 ) = 3(P̂12 · σ1 )(P̂12 · σ2 ) − σ1 · σ2 , A12 (k̂12 , P̂12 ) = (σ1 · P̂12 )(σ2 · k̂12 ) − (σ1 · k̂12 )(σ2 · P̂12 ) Question: how to interpret Kl , Ll ? Hl , Kl , Ll have the same order of magnitude They give important effects on the response function Not considered in phenomenological interactions A.Pastore (York) Linear response 10 / 29 Landau parameters in PNM Landau parameters obtained with χ-EFT (Λ = 450 MeV). 1 (a) Fl 0.5 0 -0.5 -1 1.2 0.8 (c) ~ Hl 0.3 (d) ~ Kl 0 (b) -0.3 (e) 0 0.4 -0.2 0 -0.4 0.9 0.6 0.3 0 Gl 0.04 0.08 0.12 ~ Ll -0.4 0.16 0.2 0.24 0.04 -3 0.08 0.12 0.16 0.2 0.24 -3 ρ (fm ) ρ (fm ) Full line −→ 2NF+3NF; Dashed line −→ 2NF only Remarks Landau parameters are cut-off dependent (Λ) 3 body terms play a crucial role A.Pastore (York) Linear response 11 / 29 Static Landau with χ-EFT: effect of 2- and 3- body terms Information on the static deformation of the Fermi surface χHF (0) = 1 + F0 (S=0) χRP A (0) T1 = T2 = /χFREE RPA (α) χ (S=1) = 1 + G0 + T1 T2 2 2 1 2 1 , H̃0 − H̃1 + H̃2 + K̃0 + K̃1 + K̃2 3 5 3 5 1 7 2 3 7 2 3 2 6 1 + G2 − H̃1 + H̃2 − H̃3 + K̃1 + K̃2 + K̃3 + L̃1 − L̃3 . 5 15 5 35 15 5 35 5 35 −2 3 2.5 χHF (0) χRP A (0) S=0 S=1 S=1 (Kl=Ll=0) S=1 (Hl=Kl=Ll=0) a) 2 b) 2NF (only) 2NF+3NF x 0.25 1.5 1 0.5 0 0 0.04 0.08 0.12 0.16 0.2 0.24 0 0.04 -3 A.Pastore (York) 0.08 0.12 0.16 0.2 0.24 -3 ρ [fm ] ρ [fm ] Linear response 12 / 29 Static Landau q 6= 0, ω = 0 -3 PNM n=0.1 fm Free M.Buraczynski A. Gerzelis SLy4 ∆ρ =48 1 SLy4 mod C -1 -χ/n [MeV ] 0.12 5 MeVfm 0.08 0.04 0 0 1 2 3 4 5 6 q/qF A simple formula for l = 0, 1 A simple formula to calculate the response in Landau limit χHF (q, ω) χS=0 (q, ω) RP A A.Pastore (York) " = 1 − f0 + f1 2 α2 1 /α0 1 − nd f1 (α0 α2 − α2 1 )/α0 Linear response # χHF (q, ω) 13 / 29 Extended Landau response function PNM at kF = 1.68 fm−1 , q/kF = 0.1 for χ-EFT (Hl = Kl = Ll = 0) S=0 S=1 HF lmax=0 lmax=1 lmax=2 lmax=3 2 1 3 10 S (1,M) -1 -3 (q,ω) [MeV fm ] 3 0 2 4 6 8 10 12 14 2 ω [MeV] 4 6 8 10 12 14 ω [MeV] Convergence We have an infinite sets of Landau parameters, at which l shall we stop? A.Pastore (York) Linear response 14 / 29 Extended Landau response function PNM at kF = 1.68 fm−1 , q/kF = 0.1 for χ-EFT M=0 M=1 HF lmax=0 lmax=1 lmax=2 lmax=3 2 1 3 10 S (1,M) -1 -3 (q,ω) [MeV fm ] 3 0 2 4 6 8 10 12 14 2 ω [MeV] 4 6 8 10 12 14 ω [MeV] Convergence Less clear convergence.... better results with Kl = 0 A.Pastore (York) Linear response 15 / 29 Extended Landau response function PNM at kF = 1.68 fm−1 , q/kF = 0.1 for χ-EFT M=0 -1 2 1 3 10 S (1,M) M=1 Complete L=0 L=K=0 L=K=H=0 -3 (q,ω) [MeV fm ] 3 0 2 4 6 8 10 12 14 2 ω [MeV] 4 6 8 10 12 14 ω [MeV] Remarks The Hl , Kl , Ll have a similar importance Landau parameters do depend on cut off, interaction and model!! Outline 1 Introduction 2 Landau theory of Fermi liquids 3 Linear response theory with Skyrme functionals 4 Neutrino mean free path 5 Conclusions A.Pastore (York) Linear response 17 / 29 From Landau theory to RPA (complete) The particle-hole pair can be outside the Fermi sphere Similarities Bethe-Salpeter equations Same formal method to obtain the solution (Green’s functions) Differences The residual interactions has a dependence on q New coordinates k1 , k1 , q A.Pastore (York) Linear response 18 / 29 Skyrme functionals The Skyrme functional can be written as E = Ekin + ESkyrme + Epairing + ECoulomb + Ecorr. where at second order (N1LO) reads Skyrme functional ESkyrme = X Z n d3 r Ctρ [ρ0 ] ρ2t + Ct∆ρ ρt ∆ρt + Ctτ ρt τt + Ctj j2t + Cts [ρ0 ] s2t t=0,1 +Ct∇s (∇ · st )2 + Ct∆s st · ∆st + CtT st · Tt + CtF st · Ft + Ct∇J ρt ∇ · Jt ) z (0) (1) (2) X (0) (1) (2) (2) +Ct∇j st · (∇ × jt ) + CtJ (Jt )2 + CtJ (Jt )2 + CtJ Jtµν Jtµν µν=x [E . Perlinska et al. Phys. Rev C 69, 014316 (2004)) ] The terms in red do not contribute in the Landau limit A.Pastore (York) Linear response 19 / 29 Landau vs RPA (complete) PNM at ρ = ρ0 using Skyrme-T44 (tensor). I=0 1 3 k=0.1 k=0.5 2 (α) 1 3 3 -1 -3 10 S (k,ω) (MeV fm ) k=0.1 (q=0) k=0.5 (q=0) 2 2 1 0 50 100 150 50 100 S=1 M=1 S=1 M=0 S=0 M=0 I=1 3 150 ω (MeV) Results The Landau approximation is very good for very low transferred momenta. Possible extension: keeping q 2 dependence only on F0 /G0 (direct part) A.Pastore (York) Linear response 20 / 29 Temperature effect Response function PNM at ρ = 0.16 fm−3 q = 0.1 fm−1 . BSk21 BSk24 -3 10 S (q,ω) [MeV fm ] 4 -1 2 0 LNS1 SLy5 4 0 0 2 4 6 8 10 120 ω [MeV] 2 4 6 8 10 12 ω [MeV] (0,0) (1,0) BSk24 (1,1) (b) BSk20 (a) 2 0 4 (α) 4 3 3 (α) -1 -3 10 S (q,ω) [MeV fm ] 4 LNS1 (c) SLy5 (d) 2 0 -10 -5 0 5 ω [MeV] 10 -5 0 5 10 ω [MeV] Results Thanks to the temperature we have negative energy excitations! A.Pastore (York) Linear response 21 / 29 Outline 1 Introduction 2 Landau theory of Fermi liquids 3 Linear response theory with Skyrme functionals 4 Neutrino mean free path 5 Conclusions A.Pastore (York) Linear response 22 / 29 Astrophysical applications: NMFP n(p) + νl n + νl → → n(p)0 + νl0 p+e Towards an universal functional The aim of the BSk functionals is to describe relevant process in both nuclei and stars. A.Pastore (York) Linear response 23 / 29 Landau parameters For low-energy neutrinos Landau approximation is very good 2 1 n 0 F BSk17 BSk18 BSk19 BSk20 BSk21 BSk24 LNS1 SLy5 CBF 0 -1 2 1 n 1 F 0 -1 0 0.1 0.2 0.3 0 G n 0 G n 1 0.1 -3 0.2 0.3 0.4 -3 ρ [fm ] ρ[fm ] Result How to compare Landau parameters? A.Pastore (York) Linear response 24 / 29 Neutrino mean free path: n + νl → n0 + νl0 4 BSk17 BSk18 1×10 -3 2 ρ=0.08 fm λRPA [m] 1×10 CBF BSk19 BSk20 4 1×10 -3 2 ρ=0.16 fm 1×10 4 BSk21 BSk24 1×10 -3 2 ρ=0.24 fm 1×10 0 10 20 30 40 Eν [MeV] d2 σ(Eν ) dΩk0 dω = G2F Eν2 16π 2 1 1 2 (1 + cos θ) S (0) (q, ω, T ) + gA [3 − cos θ] S (1) (q, ω, T ) ρ ρ No charge exchange We are now extending the formalism to include asymmetry and charge exchange A.Pastore (York) Linear response 25 / 29 Neutrino mean free path: n + νl → n0 + νl0 Calculations at T = 2 MeV 4 BSk17 BSk18 BSk19 BSk20 BSk21 BSk24 LNS1 SLy5 CBF 3 λRPA [m] 1×10 2 1×10 3 2 1 (b) ρ=0.16 fm 4 (c) 3 2 1×10 1 0 1×10 (a) -3 ρ=0.08 fm 1 λRPA/λFG 1×10 10 20 30 40 Eν [MeV] 50 60 0 ρ=0.24 fm 10 20 -3 30 40 Eν [MeV] 10 20 -3 30 40 50 BSk19 Eν[MeV] BSk20 BSk21 BSk24 LNS1 SLy5 50 Results We can use the comparison with ab − initio methods to discriminate between functionals A.Pastore (York) Linear response 26 / 29 Temperature effect On the left Eν = 10 MeV and on the right Eν = 60 MeV 3 (a) -3 ρ=0.08 fm 2 2 4 5 10 15 20 25 30 (c) 3 2 1 ρ=0.24 fm 0 0 -3 BSk19 BSk20 BSk21 BSk24 LNS1 SLy5 (a) -3 ρ=0.08 fm 1 -3 ρ=0.16 fm T [MeV] λRPA/λFG λRPA/λFG 1 3 (b) 4 -3 ρ=0.16 fm 5 10 15 20 25 30 (c) 3 2 1 0 0 5 10 15 20 25 30 T [MeV] (b) ρ=0.24 fm -3 BSk19 BSk20 BSk21 BSk24 LNS1 SLy5 T [MeV] 5 10 15 20 25 30 T [MeV] Results A comparison with other methods is mandatory. Very different results according to the adopted functional A.Pastore (York) Linear response 27 / 29 Outline 1 Introduction 2 Landau theory of Fermi liquids 3 Linear response theory with Skyrme functionals 4 Neutrino mean free path 5 Conclusions A.Pastore (York) Linear response 28 / 29 Conclusions and perspectives The LR theory can be used to fit functionals 1 2 We use it to detect instabilities (S=1 channel still to be fully investigated) the LR method is now applied into the Saclay-Lyon protocol Extensions of the LR formalism to treat Landau 1 2 3 Limit of stability of Landau theory Possible extension of Landau q 2 dependence Application to Neutron stars (NMFP, Specific heat...) Extension of the LR formalism to asymmetric nuclear matter (soon also charge exchange) Extension to finite range interactions THANK YOU!! A.Pastore (York) Linear response 29 / 29
© Copyright 2026 Paperzz