The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing You You Zhang (Joint work with Angelos Dassios) [email protected] 27th May 2014 1 / 17 The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing Motivation Motivation Definition The MinParisianHit Option is triggered either when the age of the excursion above L reaches time d or a barrier B > L is hit by the underlying price process S. The MaxParisianHit Option is triggered when both the barrier B is hit and the excursion age exceeds duration d above L. 2 (r − σ2 )t+σWt Let the stock price process (St )t≥0 = S0 e follow a geometric t≥0 Brownian motion and Q denote the equivalent martingale measure and define S gL,t = sup{s ≤ t : Ss = L} S dL,t = inf{s ≥ t : Ss = L} S τd+ (S) = inf{t ≥ 0|1St >L (t − gL,t ) ≥ d} HB (S) = inf{t ≥ 0|St = B} 2 / 17 The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing Motivation Motivation The fair price of a MinParisianHit Up-and-In Call option with payoff (ST − K )+ can be written in terms of hitting times in the following way using Girsanov theorem minPHCiu (x, T , K , L, d, r ) = e −rT EQ (ST − K )+ 1min{τ + (S),HB (S)}≤T d −(r + 12 m2 )T σZT + mZT =e EP (S0 e − K) e 1min{τ + (Z ),Hb (Z )}≤T d Z ∞ −(r + 12 m2 )T (S0 e σz − K )e mz P ZT ∈ dz, min{τd+ (Z ), Hb (Z )} ≤ T =e 1 σ ln SK 0 where (Zt )t≥0 = (Wt + mt)t≥0 is a P-Brownian motion and m= + 1 σ r− σ2 2 ! τd (Z ) = inf{t ≥ 0|1Zt >l (t − gl,t ) ≥ d} l = Z 1 L ln σ S0 gl,t = sup{u ≤ t|Zu = l} b= 1 B ln σ S0 Hb (Z ) = inf{t ≥ 0|Zt = b} 3 / 17 The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing Motivation Motivation (Dassios and Wu. Perturbed Brownian motion and its application to Parisian option pricing. (2)) 4 / 17 The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing Double Laplace of Excursion and Hitting time Martingale Problem Let W ,µ = µt + Wt be the perturbed drifted Brownian motion around 0. We define a three state semi-Markov process for b > 0 ? if Wt,µ > b 1 Xt = 1 if 0 < Wt,µ < b 2 if Wt,µ < 0 Let Ut = t − ḡt denote the time elapsed in current state 2 or state 1 and 1? combined (state 1? is an absorbing state). (Xt , Ut ) becomes a Markov process. Hence, Xt is a three state semi-Markov process. We consider a bounded function fi : R2 → R, i = 1∗ , 1, 2, defined as fXt (Ut , t). The generator A is an operator making Z t fXt (Ut , t) − AfXs (Us , s)ds 0 a martingale. Hence, solving Af = 0 provides us with martingales of the form fXt (Ut , t). 5 / 17 The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing Double Laplace of Excursion and Hitting time Martingale Problem We have ∂f1 ∂f1 + + λ12 (u) (f2 (0, t) − f1 (u, t)) + λ11? (u) Ae −βt h(u) − f1 (u, t) ∂t ∂u ∂f2 ∂f2 Af2 (u, t) = + + λ21 (u) (f1 (0, t) − f2 (u, t)) ∂t ∂u Af1 (u, t) = Since we are not interested in what happens after the absorbing state 1∗ has been reached, we do not define Af1∗ , the generator starting from state 1∗ . We define the times for d, b > 0 Hb = inf{t ≥ 0|Wt,µ = b} ḡt = sup{s ≤ t|Ws,µ = 0} τd,+ = inf{t > 0|1Wt,µ >0 (t − ḡt ) > d} 6 / 17 The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing Double Laplace of Excursion and Hitting time Martingale Problem Definition Given a function F (β), the inverse Laplace transform of F , denoted by L−1 {F (β)}, is the function f whose Laplace transform is F , i.e. Z ∞ e −βt f (t)dt = F (β) f (t) = L−1 {F (β)}| ⇐⇒ L {f (t)}(β) := t t β 0 Note that we consider the inverse Laplace transform with respect to the transformation variable β at the evaluation point t. 7 / 17 The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing Double Laplace of Excursion and Hitting time Martingale Problem Lemma For the -perturbed process we find the Laplace transform ,+ AE e −βHb h(uHb )1H <τ ,+ + BE e −βτd 1τ ,+ <H b d d b Rd Be −βd P̄1 (d) + A 0 e −βw h(w )p11? (w )dw = 1 − P̃21 (β)P̂12 (β) (1) Proof: Assuming f having the form fi (u, t) = e −βt gi (u) and solving Af ≡ 0 with the constraints g1 (d) = B and g2 (∞) = 0 and g1? (u) = Ah(u) we can solve for g1 which provides us with martingales of the form Mt := fXt (Ut , t) = e −βt gXt (Ut ). Let T = min{Hb , τd,+ }, then Optional Sampling suggests g1 (0) = E(M0 ) = E(MT ∧t ) = E(MT 1T <t ) + E(Mt 1T >t ) = E(MHb 1H <τ ,+ 1Hb <t ) + E(Mτ ,+ 1τ ,+ <H 1τ ,+ <t ) + E(Mt 1T >t ) d b d d b ,+d −→ E e −βHb g1? (UHb )1H <τ ,+ + E e −βτd g1 (Uτ ,+ )1τ ,+ <H t→∞ b d d d b ,+ −βHb −βτd = AE e h(uHb )1H <τ ,+ + BE e 1τ ,+ <H b d d b 8 / 17 The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing Double Laplace of Excursion and Hitting time Single Laplace transform of Hitting and Excursion time Proposition The Laplace transform of the hitting and excursion time for drifted Brownian motion µt + Wt is given by + AE e −βHb h(uHb )1H <τ + + BE e −βτd 1τ + <H = b b d d ( ∞ h i X 1 g (k, 0) − e µb g (k + , 0) + µ [f (k, 0) − f (k + 1, 0)] + 2Be −βd 2 k=0 ) r Z d ∞ (2k+1)2 b 2 2 µb− µ2 w X (2k + 1)2 b 2 − −βw 2 2w −1 e +A e dw × e h(w ) πw 3 w 0 k=0 ( ∞ ) i −1 X hp × 2 2β + µ2 f (k, β) + g (k, β) k=0 where √ f (k, β) = e − r g (k, β) = 2β+µ2 2kb N q 2kb (2β + µ2 )d − √ d √ −e 2β+µ2 2kb N q 2kb − (2β + µ2 )d − √ d 2 − (2β+µ2 )d − 2(kb)2 2 d e πd 9 / 17 The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing Double Laplace of Excursion and Hitting time Double Laplace transform of Hitting and Excursion time case Hb < τd+ Proposition The double Laplace transform of Hitting and Excursion time of a drifted Brownian motion where Hb < τd+ is + E0 e −βHb −γτd 1H <τ + = b d " Z d 0 µ(d − w ) − b −µ(d − w ) − b √ √ −N + d −w d −w q √ b 2 −γ τ̂d + (2γ + µ2 )(d − w ) − √ + Eµ ) e −( 2γ+µ +µ)b N 0 (e d −w !# q √ b 2 + e 2γ+µ −µ)b N − (2γ + µ2 )(d − w ) − √ × d −w r ∞ (2k+1)2 b 2 2 µb− µ2 w X (2k + 1)2 b 2 2 × e − 1 e − 2w dw × πw 3 w k=0 ( ∞ ) i −1 X hp × 2 2β + µ2 f (k, β) + g (k, β) e −βw e −γd 1 − e −2µb N k=0 10 / 17 The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing Double Laplace of Excursion and Hitting time Proof: Lemma E e −βHb h(uHb )1H + b <τd Rd 0 = e −βw h(w ) q 2 µ2 w 2 e µb− 2 πw 3 ∞ hp P ∞ P (2k+1)2 b 2 k=0 w (2k+1)2 b 2 − 1 e − 2w dw i 2β + µ2 f (k, β) + g (k, β) k=0 Define h(uHb ) := E e E e −βHb h(uHb )1H −γτd+ + b <τd |Hb and the l.h.s becomes + = E e −βHb E e −γτd |Hb 1H + b <τd + = E e −βHb e −γτd 1H + b <τd On the other hand, we have −γ(Hb +d−uH ) −γ(Hb +H̃0 +τ̂d ) b 1 h(uHb ) = E0 e 1H̃ <d−u Hb H̃0 >d−uH Hb + E0 e 0 Hb b h i −γ(d−uH ) b Pb (H̃0 > d − uH ) + Eb e −γ H̃0 1 = e −γHb e E0 (e −γ τ̂d ) b H̃ <d−u 0 Hb 11 / 17 The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing Double Laplace of Excursion and Hitting time case τd+ < Hb Proposition The double Laplace transform of Hitting and Excursion time of a drifted Brownian motion where τd+ < Hb is q √ h b 2 e −βd e −b( 2γ+µ −µ) N √ − (2γ + µ2 )d − b d d iX ∞ h q √ b 1 2 − e b( 2γ+µ −µ) N − √ − (2γ + µ2 )d g (k, 0) − e µb g (k + , 0)+ 2 d k=0 ) ( ∞ q i i Xh µ [f (k, 0) − f (k + 1, 0)] × 2(β + γ) + µ2 f (k, β + γ) + g (k, β + γ) × + E(e −βτd ( −γHb 1τ + <H ) = k=0 )−1 µt − b −µt − b 2µb √ √ 1−N −e N d d 12 / 17 The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing Double Laplace of Excursion and Hitting time Proof: Lemma e −βd −βτd+ E e 1τ + <H = ∞ h P k=0 b d g (k, 0) − e µb g (k + 12 , 0) + µ [f (k, 0) − f (k + 1, 0)] i i ∞ hp P 2β + µ2 f (k, β) + g (k, β) k=0 We define a new generator starting at time τd+ . State 1? is a killed state. Af1 (u, t) = ∂f1 ∂f1 + + λ11? (u) e −γt − f1 (u, t) ∂t ∂u At time τd+ we are in state 1 with f1 (d, 0) = g1 (d). Solving Af ≡ 0 with constraint g1 (∞) = 0 we derive g1 (d). As a result we have found a martingale Mt := fXt (Ut , t) with M0 = f1 (d, 0) = g1 (d). Also, with Tb being the first hitting time of b of our process starting at τd+ and hence Hb = τd+ + Tb , MTb = f1? (UTb , Tb ) = e −γTb Hence, OST yields g1 (d) = E(e −γTb ) and the double Laplace becomes + + E(e −βτd e −γHb 1τ + <H ) = E(e −βτd 1τ + <H E(e −γHb |τd+ )) b d = E(e −βτd+ 1τ + <H E(e d b d −γ(τd+ +Tb ) |τd+ )) b + = g1 (d)E(e −(β+γ)τd 1τ + <H ) d b 13 / 17 The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing Application Application to MinParisianHit options u minPHCi = e −(r + 1 m2 )T 2 ∞ Z 1 ln K σ x (xe σz − K )e mz + P ZT ∈ dz, min{τd (Z ), Hb (Z )} ≤ T Proposition The joint density of position at maturity and minimum of hitting and excursion time for standard Brownian motion is ZT + Zb 1 P(ZT ∈ dz, min{τd , Hb } ≤ T ) = p t=0 w =−∞ ∞ P " × k=−∞ ∞ P w +2kb − e d (2kb)2 e − 2d 2π(T − t) e − (z−w )2 2(T −t) (w +2kb)2 2d # −1 − × (2k+1)2 b 2 2d e− −1 Lβ {H1 (β)}|t + δ(w −b) Lβ {H2 (β)}|t dw dt k=−∞ e −βd H1 (β) = ∞ h√ P k=0 ∞ √ P i ∞ h P g (k, 0) − g (k + 12 , 0) k=0 i 2βf (k, β) + g (k, β) , H2 (β) = k=0 2βf (k + 21 , β) + g (k + 12 , β) ∞ h√ P 2βf (k, β) + g (k, β) i k=0 14 / 17 The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing Application Proof: Let Z denote a standard Brownian motion and τ := min{τd+ , Hb }. P(ZT ∈ dz, min{τd+ , Hb } ≤ T ) = ZT Zb P(ZT ∈ dz|τ = t, Zτ ∈ dw )P(τ ∈ dt, Zτ ∈ dw ) t=0 w =−∞ ZT Zb = t=0 w =−∞ ZT Zb = t=0 w =−∞ 2 (z−w ) 1 − p e 2(T −t) dzP(τ ∈ dt, Zτ ∈ dw ) 2π(T − t) 2 n (z−w ) 1 − p e 2(T −t) dz P(τ ∈ dt, Zτ ∈ dw |Hb < τd+ )P(Hb < τd+ ) + 2π(T − t) + P(τ ∈ dt, Zτ ∈ dw |τd+ < Hb )P(τd+ < Hb ) o 15 / 17 The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing Application case Hb < τd+ : P(τ ∈ dt, Zτ ∈ dw |Hb < τd+ )P(Hb < τd+ ) = P(ZHb ∈ dw |τ = t, Hb < τd+ )P(τ ∈ dt, Hb < τd+ ) n o + = δ(w −b) dw L−1 E e −β min{Hb ,τd } 1H <τ + dt β b case τd+ t d < Hb : P(τ ∈ dt, Zτ ∈ dw |τd+ < Hb )P(τd+ < Hb ) = P(Zτ + ∈ dw |τ = t, τd+ < Hb )P(τ ∈ dt, τd+ < Hb ) d = lim P (Zd ∈ dw | inf Zs > 0, sup Zs < b)P(τ ∈ dt, τd+ < Hb ) →0 0<s<d ∞ P = k=−∞ ∞ P e w +2kb − e d (2kb)2 − 2d w +2kb)2 2d −e 0<s<d dw (2k+1)2 b 2 − 2d n o + L−1 E e −βτd 1τ + <H dt β b d t k=−∞ 16 / 17 The joint distribution of excursion and hitting times of the Brownian motion with Application to Parisian Option Pricing Application References [1] Marc Chesney, Monique Jeanblanc-Picque, and Marc Yor. Brownian Excursions and Parisian Barrier Options. Annals of Applied Probability, 29, 1997. [2] Angelos Dassios and Shanle Wu. Perturbed Brownian motion and its application to Parisian option pricing. Finance and Stochastics, 14(3):473–494, November 2009. [3] Angelos Dassios and Shanle Wu. Double-Barrier Parisian options. Journal of Applied Probability, 48(1):1–20, 2011. 17 / 17
© Copyright 2026 Paperzz