INTERNAL MOCK MARKING GUIDE 1. 2. dy 4 1 y 2 1 x If y tan 2 tan , show that 2 dx 4 x2 2 . 12 du 4 1 x Let u 2 tan , 2 4 x2 2 dx 1 x 4 dy sec 2 u 1 y 2 For y tan u , du 4 dy 4 1 y 2 dy dy du dy 2 1 y So as required 4 x2 dx 4 x2 dx du dx dx Comment: Solve the simultaneous equations x 2 y 2 25r 2 and 2 y x 10r giving the answers in terms of r . 2 x 10r 2 y so 10r 2 y y 2 25r 2 100r 2 40ry 4 y 2 y 2 25r 2 , 5 y 2 40ry 75r 2 0 y 2 8ry 15r 2 0 , y 3r y 5r 0 y 3r , y 5r x 4r , 2012 x0 M1 diff arc tan A1 for answer M1 diff. tan M1 chain rule B1 for proof M1sub & exp. A1for quad. eqn M1 factorising A1 for both y A1for both x Comment: 3. Solve the equation 2 cos2 x 3 cos x 1 0 for 0 x 2 . 2 2 Let x be y , 2 cos2 y 3 cos y 1 0 2 2 cos y 1cos y 1 0 , cos y 1 5 , y , 2 3 3 M1factorising A1for both cos A1 A1 A1for all angles cos y 1, y 0, , 2 thus 5 3 5 , x , x , x , 6 2 2 2 3 3 Comment: 4. The angle between r1 and r2 is cos 1 214 . If r1 6i 3 j 2k and r2 2i j 4k , find the possible values of . © Prepared by Ssekyewa Edward GHS 1 Email: [email protected] INTERNAL MOCK MARKING GUIDE cos r1 . r2 6i 3 j 2k . 2i j 4k 4 r1 r2 36 9 4 4 2 16 21 3 4 20 2 652 216 176 0 A1 for quadratic 652 44 260 176 0 465 44 0 4, M1for dotting M1for modulus 4 3 93 4 16 20 2 2 2012 M1for factorising A1 for both 44 65 Comment: 5 Find the coordinates of the points of intersection of the curve x 2t 2 1, y 3t 1 and the straight line 3 x 4 y 3 . Substituting for x and y in the equation of the line, we get 3(2t 2 1) 12(t 1) 3 6t 2 12t 18 0 6(t-3)(t+1)=0 t 3, t 1. i.e The parameters of the points on the curve at its intersection with the line are t 3andt 1. Thus points of intersection are (17,12) and (1,0). Comment: 6 Prove that if x cos 2 , then 1 0 M1substituting A1for quadratic A1for both t A1 A1for each coordinate 1 x dx 1 1 x 2 1 cos 2 . 2 sin 2 d 4 1 cos 2 x cos 2 , dx 2 sin 2 d x 0, x 1, 0 4 2 sin 2 4 4 . sin cos d 0 2 cos 2 0 © Prepared by Ssekyewa Edward GHS M1for changing limits M1for even 2 Email: [email protected] INTERNAL MOCK MARKING GUIDE 2012 power 4 4 sin 2 d 0 2 4 0 1 cos 2 d M1for integratn 2 12 sin 2 0 4 M1for limits 1 2 0 4 2 1 2 A1for proof ALTERNATIVELY: 1 cos 2 1 cos 2 . 2 sin 2 d 1 cos 2 4 1 cos 2 x cos 2 , dx 2 sin 2 d x 0, x 1, 0 4 0 (1 cos 2 ) 2 . 2 sin 2 d 1 cos 2 2 4 0 2 0 4 1 cos 2 d 2 12 sin 2 0 4 1 2 0 4 2 2 1 Comment: 7 Find the values of for which 10 x 2 4 x 1 2x2 x has equal roots. 10 x 4 x 1 4x 2x (10 2 ) x (4 4 ) x 1 0 For equal roots: b 4ac 0 , so 2 (4 4 ) 4(10 2 ) 0 162 40 24 0 22 5 3 0 3, 12 ( 3)( 2 1) 0 2 2 2 2 ALT; Let the roots be & 2 4 4 10 2 where © Prepared by Ssekyewa Edward GHS M1collecting terms M1use of discriminant. A1for quadratic M1for factorising A1for both 1 1 and 2 5 10 2 3 Email: [email protected] INTERNAL MOCK MARKING GUIDE 2012 2 1 1 So, , to get 22 5 3 0 2 5 5 3, 12 ( 3)( 2 1) 0 Comment: 8 d 3 2 x 3 ln dx 2 x3 Show that 2 4x . 4 x6 2 x3 1 3 Let y ln In 2 x3 In 2 x3 3 2 x 3 dy 1 3 x 2 3 x 2 dx 3 2 x 3 2 x3 dy 3x 2 2 x 3 2 x 3 dx 3 2 x 3 2 x 3 dy 4 x2 dx 4 x6 M1splitting M1diffg M1diffg M1symplifying A1for answer Comment: 9 Given that f ' ' x 2 x f ' ' x 2 2 x 3 , f ' 1 0 , f 1 8 , find f x . 2 3 2 2x f ' x 2 2 x 3 2 3 2 dx 2 x 4 x 1 2 c , since f ' 1 0 , 2 4 c 0 c 6 f ' x 2 x 4 x f x 2 x 4 x 1 1 2 2 6 6 dx x 2 8 x 1 2 6 x C for f 1 8 f 1 1 8 6 C 8 C 5 Thus f x x 2 8 x Comment: 1 2 6x 5 b) Find and classify the nature of the stationary point on the curve x 4 t 3 and y t 2 2t . © Prepared by Ssekyewa Edward GHS M1Integrating M1for initial values A1for arbt. cons M1Integrating A1for constant A1for constant M1differentiatg A1for value of t 4 Email: [email protected] INTERNAL MOCK MARKING GUIDE dx dy 3t 2 , 2t 2 dt dt dy 1 dy 2t 2 2 at the stationary point, 0 Thus dx 3t dx 2 2t 0 , t 1 thus the coordinates are 3, 1 So 3t 2 d 2 y d 2 2 2 1 1 2 1 4 t t 2 3 2 2 2 3t 3t dx 3 3 3t dx 3t 2 d y 4 2 1 2 For t 1 0 thus 3, 1 min . 3 3 9 dx 2 3 10 2012 M1coordinates M1for 2nd derive. M1for checking. A1for max. The position vector of points P and Q are 2i 3 j 4k and 3i 7 j 12k respectively. Determine; i) the size of PQ. ii) The Cartesian equation of PQ. iii) The position vector of the point of intersection and the plane 4 x 5 y 2 z 5 . iv) Angle between PQ and plane in (iii) above. i) 2 3 1 PQ = 3 7 4 4 12 8 PQ ii) = (12 (4) 2 8 2 = 9 Vector equation PQ is rPQ 2 1 3 4 4 8 x 2 y 3 4 z 4 8 (iii) Cartesian equation is; x2 y3 z4 ( ) 1 4 8 from (ii) above, put x, y, z into 4 x 5 y 2 z 5 4(2 ) 5(3 4 ) 2(4 8 ) 5 5 32 20 8 © Prepared by Ssekyewa Edward GHS 5 Email: [email protected] INTERNAL MOCK MARKING GUIDE 2012 5 11 20 1 40 , y 3 , z 4 1 8 8 8 2 8 11 1 position vector = i jk 8 2 x 2 iv) Let be the angle required, (i 4 j 8k ).( 4i 5 j 2k ) 81x 45 sin 32 sin 1 9 x3 5 Since dot product is negative, such an angle cannot be between a line and a plane. Comment: 11 a) Prove that, if tan A tan( A B) is independent of x. 3 4x 6 7x and tan B , the value of 4 3x 7 6x tan A tan B 1 tan A tan B 3 4x 6 7x 4 3x 7 6 x 3 4 x 6 7 x 1 4 3x 7 6 x tan A B 3 4 x 7 6 x 6 7 x 4 3x 4 3x 7 6 x 3 4 x 6 7 x 21 18 x 28 x 24 x 2 24 18 x 28 x 21x 2 28 24 x 21x 18 x 2 18 21x 28 x 2 3x 2 3 46 x 2 46 3( x 2 1) 3 thus the value is independent of x . 2 46 46( x 1) Comment: © Prepared by Ssekyewa Edward GHS 6 Email: [email protected] INTERNAL MOCK MARKING GUIDE 2012 b) Find the maximum and minimum values of the function 6 cos 8 sin cos and the corresponding value of , hence solve 6 cos 2 8 sin cos 4 . 3(2 cos 2 ) 4(2 sin cos ) = 3(1 cos 2 ) 4 sin 2 = 3cos 2 4 sin 2 3 Let 3cos 2 4 sin 2 3 R cos 2 cos R sin 2 sin So, R cos 2 3 , R sin 2 4 2 R sin 3 53.1o R cos 4 R 2 cos 2 R 2 sin 2 3 2 4 2 R 5 3 cos 2 4 sin 2 3 5 cos(2 53.1o ) 3 Max. Value = 8 when 2 53.1o 0o 116.55 o Min. Value = 2 when 2 53.1o 180o 116.55 o Thus: 6 cos 2 8 sin cos 4 5 cos(2 53.1o ) 3 4 1 cos( 2 53.1o ) 2 53.1o 78.5o ,281.5o 5 o o 65.8 ,167.3 tan Comment: 12a) Express 1 3i 6 in the form x iy . Let z 1 3i , z 12 3 2 2 3 2 arg z tan 1 3 1 2 2 Thus 1 3i 2 cos i sin 3 3 1 3i 2 cos 4 i sin 4 1 3i 641 0i 64 0i 6 6 6 Comment: b) w is the complex number such that w p q where p, q 2 i 1 3i are real. Given that argw 2 , and w 7 , find p and q . © Prepared by Ssekyewa Edward GHS 7 Email: [email protected] INTERNAL MOCK MARKING GUIDE 2012 p2 i q1 3i 2 i 2 i 1 3i 1 3i p2 i q1 3i w 5 10 4 p q 2 p 3q i w 10 10 1 4 p q 2 2 p 3q 2 7 w 7 , so 10 2 p 3q 2 p 3q 1 arg w tan 1 , thus , so q 4 p 4p q 0 4p q 2 1 4 p 4 p 2 2 p 12 p 2 7 10 196 p 2 4900 , p 2 25 thus p 5 , q 20 w Comment: 13 Express 5 2 x 3x 2 in the form a b( x c) 2 . Deduce the maximum or minimum value of the expression. 5 2 x 3x 2 = 5 3x 2 23 x = 5 3 x 2 23 x 13 2 13 2 = 5 13 3x 13 2 = 16 3 3x 13 2 For greatest value occurs when x 13 0 , i.e x 13 Greatest value = 16 3 Comment: b) Show that the gradient of the curve y xx 32 is zero at the point P1, 4 , and sketch the curve. The tangent at P cuts the curve again at Q . Calculate the area contained between the chord PQ and the curve. © Prepared by Ssekyewa Edward GHS 8 Email: [email protected] INTERNAL MOCK MARKING GUIDE 2012 y x3 6 x 2 9 x dy dy 3 x 2 12 x 9 , for turning points, 0 , thus 3x 2 12 x 9 0 , dx dx dy So when x 1 , 3 12 9 0 thus the gradient at dx P1, 4 is 0 3x 1x 3 0 , so, x 1, x 3 and y 4, y 0 , the other turning point is 3, 0 d2y d2y , so when 6 x 12 x 1 , 0 1, 4 max dx 2 dx 2 d2y when x 3, 0 3, 0 min dx 2 Intercepts are 0, 0 & 3, 0 y 4. Grad of tangent at P is 0, so equation of tangent is At Q , y 4 , so, x 3 6 x 2 9 x 4 0 To get x 1x 1x 4 0 , thus x 1, x 4 Area 1 4 x3 6 x2 9 x dx 4 4 x4 9x2 4 x 2 x3 4 2 1 1 9 3 16 64 128 12 4 2 6 sq. units 4 2 4 Comment: 14a) The gradient of the side PQ of the rectangle PQRS is 3 4 . The coordinates of the opposite corners Q , S are respectively 6, 3 and 5, 1 . © Prepared by Ssekyewa Edward GHS 9 Email: [email protected] INTERNAL MOCK MARKING GUIDE 2012 Find the equation of PR . y3 3 , 4 y 3x 6 x6 4 __ y 1 4 , 3 y 4 x 17 since they Find the eqn of RS x5 3 __ Find the eqn of PQ are perpendicular. Solving the two simultaneously, we get the coordinates of P as P 2, 3 __ Let M be the midpoint of QS , thus the coordinates are M 12 , 2 . __ M is also the midpoint of PR , gradient of __ 3 2 PR 2 2 12 __ y3 Equation of PR : 2 , giving y 2 x 1 x2 Comment: b) Find the equation of the line through the intersection of the lines 3x 4 y 6 0 and 5 x y 13 0 and a) passes through the point 2, 4. The equation of any line through the points of intersection of 3x 4 y 6 k (5 x y 13) 0 two lines may be written as: So if the line passes through (2,4) , then, 3.2 4.4 6 k (5.2 4 13) 0 4 k 27 Thus equation becomes: 3x 4 y 6 274 (5x y 13) 0 101x 104 y 214 0 © Prepared by Ssekyewa Edward GHS 10 Email: [email protected] INTERNAL MOCK MARKING GUIDE 2012 ALT: Points of intersection y 5 x 13 , 3x 4 5x 13 6 0 58 9 , y 23 23 101 y 4 101 , equation is , 104 y 101x 214 104 x 2 104 Thus 23x 58 , x m 4 239 2 58 23 b) making an angle of 60o with the x-axis. If line makes gradient 60o with x-axis, then its gradient is tan 60 o 3 . 3 5k 3 4k 3 4 3 23 3 27 k 22 5 3 23 3 27 (5 x y 13) 0 Thus required equation is 3x 4 y 6 22 But gradient is given by ALT: tan 60o 3 , thus equation is y x 9 23 58 23 3 , 23 y 23 3 x 9 58 3 0 Comment: 15a) Using the substitution y x 2 x to solve the equation x 4 2 x 3 7 x 2 8x 12 0 . y x 2 x , y 2 x 4 2 x3 x 2 x 4 2 x3 x 2 8 x 2 x 12 0 y 2 8 y 12 0 , y 2 y 6 0 so, y 2, y 6 x 2 x 2 0 , x 2x 1 0 , x 2, x 1 And x2 x 6 0 , x 3x 2 0 , x 3, x 2 b) M1for substg A1for quadratic M1for factorising A1for both y. A1for both x A1for both x . Solve for x and y : x log 4 128 y log 8 2 6 log 2 x 13 log 2 y 3 2 log 4 6 x log 2 128 y log 2 2 6 log 2 4 log 2 8 log 2 xy log 2 6 7x y 6 …..(i) we get; 2 3 © Prepared by Ssekyewa Edward GHS xy 6 …….(ii) M1for change of base M1for equation M1for equation A1for quadratic. 11 Email: [email protected] INTERNAL MOCK MARKING GUIDE 7 6 y . 6 2 y 3 ( y 21)( y 3) 0 So y 3, x 2 y 21, x Comment: 16a) Find y 2 18 y 63 0 2012 A1for both y A1for both x . 2 7 x sin x cos x dx u x, 1 x sin 2 x dx 2 Let dv sin 2 x dx du 1, v 12 cos 2 x dx x cos 2 x 1 cos 2 x dx 2 2 2 1 1 x sin 2 x dx 2 2 1 2 x cos 2 x sin 2 x c 8 M1double angle M1for parts. M1for integration A1for answer. Comment: 16b) Express 6 9 x in partial fractions and hence find 3 27 x 8 6 9x 6 9x Let 27 x 8 3x 2 9 x 2 6 x 4 6 9x A Bx C 2 2 3x 29 x 6 x 4 3x 2 9 x 6 x 4 3 6 9x dx 3 8 27 x M1factorising 6 9 x A 9 x2 6 x 4 Bx C 3x 2 x 2 : 9 A 3B 0 , x : 6 A 2 B 3C 9 , x o : 4 A 2C 6 Solve to get; A 1, B 3, C 1 6 9x 3x 1 1 Thus dx dx 3x 2 9 x 2 6x 4 dx 27 x 3 8 1 1 In3x 2 In9 x 2 6 x 4 c 3 6 Or In 9 x 3x 2 2 1 3 6x 4 1 c 6 M1for partial fr M1solving A1for all values M1for substg. M1 M1for integration A1for answer. Comment: © Prepared by Ssekyewa Edward GHS 12 Email: [email protected] INTERNAL MOCK MARKING GUIDE © Prepared by Ssekyewa Edward GHS 2012 13 Email: [email protected]
© Copyright 2026 Paperzz