Strangeness and entropy Helen Caines Yale University Strasbourg - May 2006 Centrality dependence Solid – STAR Au-Au √sNN = 200 GeV Hollow - NA57 Pb-Pb √sNN = 17.3 GeV STAR Preliminary We can describe p-p and central Au-Au average ratios. Can we detail the centrality evolution? Look at the particle enhancements. E(i) = YieldAA/Npart Yieldpp /2 Helen Caines Strasbourg – May 2006 2 Centrality dependence STAR Preliminary • Use stat. model info: C – p-p Strangeness suppressed GC – central A-A Strangeness saturated • Transition describes E(i) behaviour Au-Au √sNN = 200 GeV • T =170-165 MeV assume same T for p-p and Au-Au K. Redlich Helen Caines Strasbourg – May 2006 3 Centrality dependence Correlation volume: STAR Preliminary V= (ANN) ·V0 ANN = Npart/2 V0 = 4/3 p·R03 R0 = 1.1 fm proton radius/ strong interactions T = 165 170 MeV Au-Au √sNN = 200 GeV Seems that T=170 MeV fits data best – but shape not correct K. Redlich Helen Caines Strasbourg – May 2006 4 Varying T and R Au-Au √sNN = 200 GeV Calculation for most central Au-Au data Correlation volume: V0 R03 R0 ~ proton radius strong interactions Rapid increase in E(i) as T decreases SPS data indicated R = 1.1 fm Helen Caines Strasbourg – May 2006 K. Redlich 5 Npart dependence Correlation volume: STAR Preliminary V= (ANN)a ·V0 ANN = Npart/2 V0 = 4/3 p·R03 R0 = 1.2 fm proton radius/ strong interactions T = 165 MeV 1/3 a=1 2/3 Au-Au √sNN = 200 GeV Seems to be a “linear” dependence on collision geometry Helen Caines Strasbourg – May 2006 K. Redlich 6 More on flavour dependence of E(i) PHOBOS: Phys. Rev. C70, 021902(R) (2004) PHOBOS: STAR Preliminary Au-Au √sNN = 200 GeV measured E(ch) for 200 and 19.6 GeV Enhancement for all particles? Yes – not predicted by model Similar enhancement for one s hadrons Helen Caines Strasbourg – May 2006 7 Hagedorn temperature (1965) – Resonance mass spectrum grows exponentially – Add energy to system produce more and more particles – Maximum T for a system of hadrons. TH ~ 160 MeV r(m) (GeV-1) TDS = DE increase √s ↔ increase S Blue – Exp. fit Tc= 158 MeV Green - 1411 states of 1967 Red – 4627 states of 1996 filled: AA open: elementary m (GeV) Helen Caines Strasbourg – May 2006 [Satz: Nucl.Phys. A715 (2003) 3c 8 Entropy and energy density • Landau and Fermi (50s) • Energy density, e, available for particle creation E ( sNN 2mN ) sNN • ε V 2mN V0 • Assume S produced in early stages of collision • Assume source thermalized and expands adiabatically • Preserve S • Ideal fluid • S correlated to e via EOS Helen Caines dNch/dh is correlated to S Strasbourg – May 2006 9 Entropy and √s • Approximate EOS for that of massless pions. 1 p ε 3 • Assume blackbody ε T4 • s = S/V related to e Ts ~ ε p s ~ ε 3/4 s ~ V( sNN 2mN )3/4 sNN Helen Caines 1/4 Strasbourg – May 2006 = Fn(√s) 10 Nch as measure of entropy J.Klay Thesis 2001 S ~ ε 3/4 V ( sNN 2mN )3/4 F 1/4 sNN π S ~ ~F V Np Entropy in Heavy Ion > Entropy in p-p? Different EOS? QGP? Helen Caines Strasbourg – May 2006 11 Heavy-ion multiplicity scaling with √s dNch /dη log( s ) Npart /2 There is a scaling over several orders of magnitude of √ s i.e. As function of entropy PHOBOS White Paper: Nucl. Phys. A 757, 28 Helen Caines Strasbourg – May 2006 12 HBT radii <kT>≈ 400 MeV (RHIC) <kT>≈ 390 MeV (SPS) No obvious trends as fn of √s p HBT radii from different systems and at different energies scale with (dNch/dη)1/3 power 1/3 gives approx. linear scale Works for different mT ranges Entropy determines radii nucl-ex/0505014 Lisa et al. Helen Caines Strasbourg – May 2006 13 Eccentricity and low density limit v2 different as fn Npart and energy At hydro. limit v2 saturates At low density limit 1 dN v2 eccent Area dy R2x R2y PHENIX preliminary eccent R R 2 x 2 y Voloshin, Poskanzer PLB 474 (2000) 27 Helen Caines Apparent complete failure. Especially at low density! Strasbourg – May 2006 14 Fluctuations matter PHOBOS QM2005 Important for all Cu-Cu and peripheral Au-Au Helen Caines Strasbourg – May 2006 15 Now see scaling Energy range scanned from √s= 4-200 GeV Again dN/dy i.e. “low density limit” scaling now works entropy important Helen Caines Strasbourg – May 2006 16 Strangeness vs entropy dNch/dh npp((1-x)Npart/2 + xNbin) Solid – STAR Au-Au √sNN = 200 GeV Hollow - NA57 Pb-Pb √sNN = 17.3 GeV npp= Yield in pp = 2.29 ( 1.27) x = 0.13 No scaling between energies But does become ~linear at higher dNch/dh Helen Caines L X Strasbourg – May 2006 W 17 LHC prediction I 6.4 = RHICx1.6 6 5 Most central events: dNch/dh ~1200 5.5 TeV 1000 PHOBOS White Paper: Nucl. Phys. A 757, 28 Helen Caines Strasbourg – May 2006 18 LHC prediction II Most central events: dNch/dh ~1200 dNch/dh1/3 ~10.5 Ro = Rs = Rl = 6 fm Helen Caines Strasbourg – May 2006 19 LHC prediction III Most central events: dNch/dh ~1200 S ~ 20 Helen Caines But I suspect I’m not in the low density limit any more so v2/e ~ 0.2 Strasbourg – May 2006 20 LHC prediction IV Most central events: dNch/dh ~1200 dNL/dy = dNL/dy ~20-30 dNX/dy = dNX/dy ~4-6 dNW/dy = dNW/dy ~0.5-1 L X W L X W 03 Helen Caines Strasbourg – May 2006 21 Models readily available to experimentalists Models 4 parameter Fit Authors M. Kaneta et al. Ensemble Grand Canonical Parameters T, q, s , s SHARE V1.2 THERMUS V2 G. Torrieri, J. Rafelski et al. Grand Canonical T, q , s , s, q , I3, N, C , C S. Wheaton and J. Cleymans Canonical and Grand Canonical T, B, S, Q, s, R T, B, S , q, C, s , C , R Feed Down possible default is with % feed-down default is no feeddown (harder to manipulate) Helen Caines Strasbourg – May 2006 22 First make a consistency check Helen Caines Strasbourg – May 2006 23 The results Ratio p/p K/K p/p K/p p/p L/p L/p X/p X/p W/p W/W Helen Caines Au-Au √sNN = 200 GeV STAR Preliminary after feed-down 1.01±0.02 increase s 0.96±0.03 decrease T 0.77±0.04 0.15±0.02 0.082±0.009 0.054±0.006 1 error 0.041±0.005 (7.8±1) 10-3 Similar T and s -3 (6.3±0.8) 10 Significantly different errors. (9.5±1) 10-4 Not identical and feed-down really matters 1.01±0.08 Strasbourg – May 2006 24 “Best” predictions (with feed-down) 0-5% THERMUS 45 ± 10 MeV S 22 ± 7 MeV Q -21 ± 8 MeV T 168 ± 6 MeV s 0.92 ± 0.06 SHARE Au-Au √sNN = 200 GeV STAR Preliminary Helen Caines B Strasbourg – May 2006 q 1.05 ± 0.05 (23 MeV) s 1.02 ± 0.08 (5 MeV) T 133 ± 10 MeV s 2.03 ± 0.6 q 1.65 ± 0.5 s B Kaneta 1.07 8.0 ±±0.2 2.2 MeV S -10.3 ± 4.5 MeV T 154 ± 4 MeV s 1.05 ± 7 25 Predictions from statistical model B nB V V B / nB N part e B / T L nL V L nL V (e e B /T S /T e S /T N part ) N part e B /T (e B / T e S / T ) N part e B / T e 2 B / T e S / T N part L N partBehavior as expected L e 2 B / T N part Helen Caines Strasbourg – May 2006 26 Comparison between p-p and Au-Au Au-Au √sNN = 200 GeV STAR Preliminary p-p √s = 200 GeV STAR Preliminary Canonical ensemble T 171 ± 9 MeV T 168 ± 6 MeV s 0.53 ± 0.04 r Helen Caines s 0.92 ± 0.06 3.49 ± 0.97 fm r Strasbourg – May 2006 15 ± 10 fm 27 Conclusions • dNch/dh is strongly correlated with entropy • dNch/dh scales as log(√s) • Several variables from the soft sector scale with dNch/dh • HBT • v2 at low densities • Strangeness centrality dependence • Statistical models • Currently differences between models • All get approximately the same results • Also predict little change in strangeness at LHC Soft physics driven by entropy not Npart Helen Caines Strasbourg – May 2006 28
© Copyright 2026 Paperzz