A Robust Algorithm for Predicting Freezeout and Exhaustion Under

$ 5REXVW $OJRULWKP IRU 3UHGLFWLQJ )UHH]HRXW DQG
([KDXVWLRQ 8QGHU (TXLOLEULXP &RQGLWLRQV
5RQ 3LHSHU DQG 6KHULI 0LFKDHO
'HSDUWPHQW RI (OHFWULFDO DQG &RPSXWHU (QJLQHHULQJ
1DYDO 3RVWJUDGXDWH 6FKRRO 0RQWHUH\ &$ $EVWUDFW
WKH PHWKRG SURSRVHG KHUH LV GHULYHG IURP WKH QX
PHULFDO VFKHPH NQRZQ DV LQWHUYDO ELVHFWLRQ >@ DQG
$
QXPHULFDOO\
UREXVW
PHWKRG
IRU
HYDOXDWLQJ
WKH
LW ZDV IRXQG ZRUN ZHOO ZLWK YDULHW\ RI FRPELQDWLRQV
WHPSHUDWXUHGHSHQGHQW FDUULHU FRQFHQWUDWLRQV DQG UH
RI SURnOHV DQG RWKHU QRQVWDQGDUG FRQGLWLRQV )LJXUH
ODWHG )HUPL OHYHOV LV SURSRVHG 7KH PHWKRG LV DSSOL
SURYLGHV D oRZFKDUW GHVFULELQJ WKH VDOLHQW QXPHUL
FDEOH WR VLPSOH FDVHV IRU ZKLFK DQDO\WLF VROXWLRQV DUH
FDO IHDWXUHV RI WKH FDOFXODWLRQ 7KH EDVLF VFKHPH KDG
DYDLODEOH DV ZHOO DV PRUH FRPSOH[ FDVHV LQ ZKLFK QX
WR EH PRGLnHG GXH WR WKH H[WUHPHO\ ODUJH G\QDPLF
PHULFDO PHWKRGV DUH UHTXLUHG GXH WR QRQVWDQGDUG HI
UDQJH LQ WKH 3 = IHFWV LQFOXGLQJ EDQGJDS ZLGHQLQJ FRPSHQVDWLRQ DQG
VKRZV WKDW WKH UDQJH RI YDOXHV LQ 3 = FDQ FRYHU GHJHQHUDF\ LQGXFHG E\ KLJK OHYHOV RI GRSLQJ
GHFDGHV RI YDULDWLRQ ,Q RUGHU WR HpFLHQWO\ DSSO\ WKH
6HH IRU H[DPSOH )LJ
D ZKLFK
PHWKRG RI LQWHUYDO ELVHFWLRQ D URXJK HVWLPDWH IRU WKH
%DFNJURXQG IRU $QDO\VLV
]HUR LQ 3 = LV QHHGHG IRU HDFK WHPSHUDWXUH RI LQWHU
HVW 7KLV LV REWDLQHG LQ D VLPSOH ZD\ WKURXJK XVH RI
7KH SK\VLFDO EDVLV IRU DQDO\VLV DVVXPHV WKDW WKDW WKHUH
LV VXpFLHQW VSDWLDO XQLIRUPLW\ LQ WKH GRSLQJ SURnOHV
LQ RUGHU WR DSSO\ WKH FRQGLWLRQ RI FKDUJH QHXWUDOLW\
3 7 S
b b;
Q
b
1D
;
1
G
WKH VLJQ
DQG GLm YHFWRU RSHUDWLRQV DV LOOXVWUDWHG RQ
)LJV E DQG F UHVSHFWLYHO\ 7KLV LQLWLDO URXJK HVWL
PDWH IRU ZKHUH WKH ]HUR LQ 3 = RFFXUV ZLOO VHUYH DV D
VHHG IRU WKH LQWHUYDO ELVHFWLRQ PHWKRG 7KLV QG VWHS
SURGXFHV D VPRRWK FRQYHUJHQW VROXWLRQ XVLQJ RQO\ GHFDGH RI G\QDPLF UDQJH FHQWHUHG RQ WKH VHHG
ZKHUH 7 LV WKH .HOYLQ WHPSHUDWXUH SR DQG QR DUH WKH
HTXLOLEULXP KROH DQG HOHFWURQ FDUULHU FRQFHQWUDWLRQV
b
UHVSHFWLYHO\ ZKLOH 1D
DQG
1G
DUH WKH LRQL]HG DF
FHSWRUV DQG GRQRUV DWRP FRQFHQWUDWLRQV UHVSHFWLYHO\
7KH VXPPDWLRQV UXQ RYHU WKH QXPEHUV RI LPSXULWLHV
7KH DSSURDFK SUHVHQWHG LV IDFLOLWDWHG E\ GHnQLQJ WKH
$QDO\VLV
7KH QRUPDOL]HG HQHUJ\ OHYHO GLmHUHQFHV EHWZHHQ WKH
FRQGXFWLRQ DQG YDOHQFH EDQGV PHDVXUHG UHODWLYH WR
WKH )HUPL OHYHO DUH UHVSHFWLYHO\
SDUDPHWHU = ZKHUH
=
H[S>()L
b
() N7 @
ZKHUH N LV %ROW]PDQ
V FRQVWDQW () LV WKH )HUPL OHYHO
DQG ()L LV WKH LQWULQVLF )HUPL OHYHO
()
zQ
,Q QRQGHJHQHU
b
D
N7
(Y
zS
(Y (F
b
()
E
N7
DWH FDVHV LH ZKHUH WKH %ROW]PDQ DSSUR[LPDWLRQ FDQ
ZKHUH (J
EH DSSOLHG WR VLPSOLI\ WKH H[DFW H[SUHVVLRQ IRU WKH
KROH FRQFHQWUDWLRQV FDQ QRZ EH GHnQHG DV
FDUULHU FRQFHQWUDWLRQV WKH =
(F
b
SDUDPHWHU LV GLUHFWO\
SURSRUWLRQDO WR WKH HTXLOLEULXP KROH FRQFHQWUDWLRQ
,W WXUQV RXW WKDW
( ) b( F N7
(Y b() N7
Q
1F H
S
1Y H
7KH FRQVWDQW RI SURSRUWLRQDOLW\ LV WKH WHPSHUDWXUH
GHSHQGHQW LQWULQVLF FRQFHQWUDWLRQ
7KH HTXLOLEULXP HOHFWURQ DQG
Q
D
S
E
(T FDQ EH H[SUHVVHG DV 3 = 1XPHULFDO PHWK
ZKHUH WKH QRUPDOL]HG FRUUHFWLRQ IDFWRUV Q S IRU
RGV EDVHG RQ VXFFHVVLYH VXEVWLWXWLRQ LQ VROYLQJ IRU
GHJHQHUDWH VWDWLVWLFV FDQ EH GHnQHG
WKH ]HURV LQ H[SUHVVLRQ ZHUH IRXQG WR EH XQUH
OLDEOH LQ SURGXFLQJ D FRQYHUJHQW VROXWLRQ
+RZHYHU
Q
) zQ zQ
H
D
t u
e
1Y
e
E
e
PQ
z S
LV WKH HmHFWLYH PDVV IRU WKH UHVSHFWLYH EDQGV
ZKHUH P
>@
PS
1F
)RU QRQGHJHQHUDWH FRQGLWLRQV Q

,Q
RUGHU WR IDFLOLWDWH FDVWLQJ (T LQWR D IRUP GHSHQ
GHQW RQ WKH = SDUDPHWHU WKH ZHOO NQRZQ >@ UHODWLRQV
IRU LQWULQVLF FRQFHQWUDWLRQ DQG )HUPL OHYHO DUH XVHG
S
QL
b
1F 1Y H
(J
N7
› w
DQG
(F (Y
()L
N7
1Y
OQ
1F
)ROORZLQJ WKH VWDQGDUG PHWKRGV RI WUDQVIRUPLQJ (TV
PDNLQJ XVH RI (TV ^ LW IROORZV WKDW
QL
Q
Q
D
=
QL S =
S
E
0DNLQJ XVH RI WKH )HUPL SUREDELOLW\ GLVWULEXWLRQV WR
SUHGLFW LRQL]DWLRQ OHYHOV RI WKH GRQRUV DQG DFFHSWRUV
b
LH 1D
DQG 1
G
VXEVWLWXWLRQ RI (TV
LQWR (T
DQG GLYLGLQJ E\ WKH LQWULQVLF FRQFHQWUDWLRQ OHDGV
#
WR
S =
3 = 7 b#
Q =
b
b
0D
;
M
1 GM
b
JGM = 0G
;
M
1 DM
JDM = H
(D b()L () b(G H
$
N7
$
N7
ZKHUH 0D JQ DQG 0G JG DUH WKH QXPEHU RI LPSX
ULW\ FRPSRQHQWV GHJHQHUDF\ IDFWRUV IRU DFFHSWRUV
DQG GRQRUV UHVSHFWLYHO\
7KH GRQRU DQG DFFHSWRU
FRQFHQWUDWLRQV ZLWK WKH RYHUEDUV DUH QRUPDOL]HG E\
WKH LQWULQVLF FRQFHQWUDWLRQ 7KH HQHUJ\ OHYHOV IRU WKH
)LJXUH )ORZFKDUW
LPSXULWLHV DUH GHnQHG UHODWLYH WR WKH YDOHQFH EDQG
LH
) zS S
7KH )HUPL OHYHO LQWHJUDO ) z ZLWK XVHIXO DSSUR[L
S
=
{
) z
OQ>) z@
ZKHUH F
F
b
H
z
IRU
F F z F z
b
b
z
z z F
F
H[S[
;
b
F
e
{PQ N7 K
G[
b
(G
D
LV WKH VWDQGDUG FLWHG YDOXH IRU GRQRUV PHD
G
(D
D
(D
E
F z
1F
ZKHH (
(F
VXUHG ZLWK UHVSHFW WR WKH FRQGXFWLRQ EDQG
PDWLRQV DUH UHVSHFWLYHO\ GHnQHG >@
) z
(G
E
z
H Q
E
F z
b
ZKHUH (D LV WKH VWDQGDUG FLWHG YDOXH IRU DFFHSWRUV
PHDVXUHG ZLWK UHVSHFW WR WKH YDOHQFH EDQG
)RU GH
JHQHUDWH FRQGLWLRQV GXH WR KLJK GRSLQJ LW ZRXOG EH
F
D
QHFHVVDU\ WR LQFOXGH Q DQG S QRQWULYLDOO\ LQ (T
OQ Q
OQ
OQ S
OQ
b
b
cb
cb
) zQ zQ
D
) zS zS
E
b
&RQVOXVLRQV
ZKLFK ZRXOG EH LGHQWLFDO LQ IRUP WR WKH 5+6 RI (T
E DIWHU OHWWLQJ F
F
/DVWO\ WKH
7KH PHWKRG GHVFULEHG KHUH ZDV IRXQG WR EH JHQHU
H[SOLFLW GHSHQGHQFH RI zQ DQG zS RQ = LV JLYHQ E\
zQ
OQ =
zS
b
b
OQ = › w
OQ
1Y
1F
› w
1Y
1F
b
b
DOO\ UREXVW LQ SURGXFLQJ D FRQYHUJHQW VROXWLRQ XQGHU
(J
D ZLGH UDQJH RI FRQGLWLRQV IRU ZKLFK RWKHU QXPHULFDO
D
N7
PHWKRGV VXFK DV VXFFHVVLYH VXEVWLWXWLRQ ZRXOG IDLO
7KH PHWKRG ZDV WHVWHG DJDLQVW VRPH FDVHV IRU ZKLFK
(J
DQDO\WLF VROXWLRQV DUH DYDLODEOH DQG WKHUH ZDV H[FHO
E
N7
OHQW DJUHHPHQW
$ UHSRUW SURYLGLQJ D IXOO GLVFORVXUH
RI GHWDLOV LV LQ SUHSDUDWLRQ
ZKLFK LV UHTXLUHG LQ HYDOXDWLQJ WKH FRUUHFWLRQV (T
IRU GHJHQHUDWH FRPSXWDWLRQV
5HIHUHQFHV
([DPSOH
>@ +DPPLQJ 5:
$V DQ H[DPSOH SOHDVH nQG LQ )LJ
WKH WZR FXUYHV
ORJ S SORWWHG YHUVXV QRUPDOL]HG 7 REWDLQHG
>@ 6KXU
IRU D QRQGHJHQHUDWH FDVH ZLWK WZR DFFHSWRU LPSXUL
0
3K\VLFV RI 6HPLFRQGXFWRU 'HYLFHV
LPSXULWLHV
f(Z)= (+/-) log10(abs[ P(z) +/- 1])
200
f(Z)
100
0
0
10
20
30
40
50
60
q=si gn (f)
2
0
-2
0
10
20
10
20
30
40
50
30
40
50
di ff(q)
2
0
-2
spec case T= 67.8
0
log10(Z)
)LJXUH )LQGLQJ DSSUR[LPDWH ]HURV RI 3 = DEF
LV WRS PLGGOH DQG ERWWRP UHVSHFWLYHO\
'RYHU 3XEOLFDWLRQV 3UHQWLFH+DOO (QJOHZRRG &OLmV 1- WLHV ZKLFK DUH SDUWLDOO\ FRPSHQVDWHG ZLWK WZR GRQRU
-100
-10
1XPHULFDO 0HWKRGV IRU 6FLHQ
WLVWV DQG (QJLQHHUV
estimates rough and smooth
17.4
rough
smooth
17.2
17
log10( po )
16.8
16.6
16.4
16.2
16
15.8
15.6
0
)LJXUH 2
4
6
8
10
1000 X 1/T
5HVXOWV RI PHWKRG VKRZLQJ DSSUR[LPDWH
VROXWLRQ DQG VPRRWK VROXWLRQ REWDLQHG XVLQJ LQWHUYDO
ELVHFWLRQ PHWKRG
12
14
16
18