June 2006 6675 Further Pure Mathematics FP2 Mark Scheme Question number 1. Scheme Marks e x ex e x ex 2 5 2 2 2x x 3e 22e 7 0 (3e x 1)(e x 7) 0 x ln 1 or ln 3 3 11 M: Simplify to form quadratic in e x 1 e x , e x 7 M: Solve 3 term quadratic. 3 B1 M1 A1 M1 A1 A1 x ln 7 (6) 6 Marks 2. (a) Using b2 a 2 (1 e2 ) or equiv. to find e or ae: (a = 2 and b = 1) M1 A1 3 2 Using y 2 4(ae) x M1 A1 (4) e (b) y 2 4 3 x (M requires values for a and e) x 3 B1ft (1) 5 Marks 3. ds d s = 0 at = 0: s e sin cos d e sin k M1 A1 (M mark may be scored by a full substitution method) M1 A1cso s esin 1 k = –1 (4) (M mark requires a k, or use of limits) 4 Marks Question number 4. Scheme Marks dy 2x dx 1 ( x 2 ) 2 M: d 2 y 2(1 x 4 ) 2 x.4 x3 dx 2 (1 x 4 )2 dy dy 2x or 2 2 dx 1 x 2 dx 1 ( x ) 2 6x4 4 2 (1 x ) M1 M1 A1cso 3 dy 2 2 1 3 dx (1 1) 2 2 d y 1 2 dx A1cso (6) 3 = –22 M1 A1 (or 22) (or exact equivalent, e.g. 8, 2 2 ) 6 Marks 2nd M: Quotient or product rule attempt. (Chain rule, if used, must be ‘good’.) 3rd M: Attempt with derivative values A: Correct derivative values (1 and 1) seen or implied by working. Alternative: (involving implicit differentiation). dy sec 2 y 2x [M1 A1] (allow one ‘slip’ for M1) dx d 2 y dy dy 2 sec y 2 2 sec y (sec y tan y ) 2 dx dx dx (or alternative dy d2 y dy 2 x cos 2 y , so 2 cos 2 y 2 x 2 cos y ( sin y ) 2 dx dx dx 2 Then marks as in main scheme (n.b. tan y 1, sec y 2 ). e.g. ) [M1] Question number 5. (a) Scheme Marks dy 4 sec h 2 4 x 1 dx dy 0 cosh 2 4 x 4 cosh 4 x 2 Put dx 4 x ln( 2 3 ) or 8 x ln( 7 4 3 ) or e 4 x 2 3 or e 4 x 7 4 3 ( or +) 1 1 x ln( 2 3 ) or x ln( 7 4 3 ) (or equiv.) 4 8 (b) 1 y ln( 2 3 ) tanh(....) (Substitute for x) 4 1 3 sec h 4 x 1 tanh 2 4 x , tanh 4 x 2 2 3 1 1 y ln( 2 3 ) 2 3 ln 2 3 (*) 2 4 4 B1 M1 A1 A1 (4) M1 M1 A1 (3) 7 Marks (a) ‘Second solution’, if seen, must be rejected to score the final mark. (b) 2nd M requires an expression in terms of 3 without hyperbolics, exponentials and logarithms. Question number 6. (a) Scheme Marks dx 1 1 dt t B1 B1 1 dy 2t 2 dt 2 2 1 2 1 1 t 1 1 2 1 2 1 or 1 2t , t t t t t 4 1 4 Length 1 dt t ln t 1 4 ln 4 1 3 ln 4 (*) t 1 (b) Surface area = 2 2 4 1 2 1 1 2 4 t 1 2t dt t M1 M1 A1 (7) M1 1 1 4 8 t 2 t 2 dt 1 4 32 1 16 2t 2 160 (8 ) 2t 2 (8 ) 4 2 3 3 3 3 1 M1, A1 1 53 3 M1 M1 A1 (4) 11 Marks Note dependence of M’s. (a) 2nd M: Complete integration attempt. 3rd M: Subs. correct limits and subtract. (b) 2nd M: Complete integration attempt. 3rd M: Subs. correct limits and subtract. In (b), missing 2 or or 2 throughout could score M0 M1 M1 A0. If 2 is there initially, then lost, could score M1 M1 M1 A0. Question number 7. Scheme Marks M1 A1 A1 x3 x3 arsinh x dx 3 3 x2 1 x 2 arsinh xdx 3 x3 arsinh x = 9arsinh3 3 0 du 2x Let u x 2 1 dx or 9 ln 3 10 B1 2 2 u x 1 1 1 1 x3 1 u 1 1 2 2 d u d u u u 1 1 du 3 6 6 u 2 .2 x u2 32 1 1 2u 2u 2 6 3 2u du 2 x dx M1 M1 1 2 3 u 1 du M1 1 u 3 u 3 3 When x = 0, u = 1 and when x = 3, u = 10 ......u 10 M1 A1 10 3 1 2 1 2u 2 1 20 10 2 2 2 u 2 10 3 6 3 6 3 1 1 14 10 4 1 9 ln 3 10 7 10 2 Area = 9arsinh 3 (*) 6 3 3 9 A1cso (10) 10 Marks Dependent M marks: M: Choose an appropriate substitution & find du or ‘Set up’ integration dx by parts. M: Get all in terms of ‘u’ or Use integration by parts. M: Sound integration. M: Substitute both limits (for the correct variable) and subtract. Question number 7. Scheme Marks Alternative solution: dx cosh Let x sinh d M1 M1 x 2ar sinh x dx sinh 2 cosh d sinh 1 sinh cosh 2 1 d 3 3 3 M1 A1 A1 B1 arsinh3 sinh 3 3 0 = 9arsinh3 1 1 cosh 3 2 sinh cosh 1 d cosh 3 3 3 arsinh 3 3 1 1 cosh 1 10 10 cosh 10 1 3 3 3 0 3 3 M1 1 7 10 2 1 9 ln 3 10 7 10 2 Area = 9arsinh 3 3 3 3 9 M1 A1 (*) A1cso (10) 10 Marks Question number 7. Scheme Marks A few alternatives for: (i) x3 x2 1 dx . du 2x dx Let u x 2 3 u2 1 u 1 1 2 du 1 u du 2 1 u 2u No marks yet… needs another substitution, or parts, or perhaps… u 1 1 u 1 u 1 u 1 1 1 1 u du du 2 2 1 u 3 1 1 1 u 2 1 u 2 3 Limits (0 to 9) (ii) Let x sinh sinh 3 2 cosh cosh d sinh cosh 1 d Then, as in the alternative solution, 1 1 cosh 3 sinh cosh 2 1 d cosh 3 3 3 Limits (0 to arsinh3) M1 M1 M1 M1 dx cosh d M1 M1 M1 M1 Question number 7. (iii) Scheme Marks M1 du sec 2 d Let u tan tan 3 2 2 sec sec d tan sec sec 1 d sec 3 sec 2 sec tan d sec tan d sec 3 Limits sec 1 to sec 10 (iv) (By parts… must be the ‘right way round’, not integrating x 2 ) du dv x u x2 , 2x , v 1 x2 2 dx dx 1 x x 2 1 x 2 2 x 1 x 2 dx M1 M1 M1 M1 M1 Limits (v) (By parts) du dv 1 u x3 , 3x 2 , v arsinh x dx dx 1 x2 (vi) x3 x( x 2 1) x x( x 2 1) x 2 2 2 1 x 1 x 1 x 1 x2 x 2 x 1 x dx 1 x 2 dx 3 1 1 1 x2 2 1 x2 2 3 Limits M1 x2 1 x2 M1 3 2 2 x 1 2 3 No progress M0 M1 M1 M1 M1 Question number 8. (a) Scheme Marks x cosh x dx x sinh x nx n n n 1 M1 A1 sinh x dx M1 x n sinh x nx n 1 cosh x n(n 1) x n 2 cosh x dx I n x sinh x nx n (b) n 1 cosh x n(n 1) I n 2 A1 (*) I 4 x 4 sinh x 4 x 3 cosh x 12I 2 I 4 x 4 sinh x 4 x 3 cosh x 12x 2 sinh x 2 x cosh x 2 I 0 (This M may also be scored by finding I 2 by integration.) I 4 x 4 12 x 2 24 sinh x, 4 x 3 24 x cosh x (c) x C A1, A1 (5) 1 12 x 2 24 sinh x 4 x 3 24 x cosh x 0 = 37sinh 1 – 28cosh 1 M: x = 1 substituted throughout (at some stage) e e 1 e e 1 28 37 2 2 M: Use of exp. Definitions (can be in terms of x) 1 9e 65e 1 2 4 M1 M1 B1 I 0 cosh x dx sinh x k (4) M1 M1 A1 (3) 12 Marks (b) Integration constant missing throughout loses the B mark . Question number 9. (a) (b) Scheme Marks x 2 mx c 1 b 2 x 2 a 2 (mx c) 2 a 2 b 2 a2 b2 b 2 a 2 m 2 x 2 2a 2 mcx a 2 c 2 b 2 0 M1 2 2a mc 4b 2 a 2m2 a 2 c 2 b2 4a 4 m 2 c 2 4a 2 b 2 c 2 b 4 a 2 m 2 c 2 a 2 m 2 b 2 2 2 (*) c2 b2 a2m2 (*) (c) Find height and base of triangle (perhaps in terms of c). c b 2 a 2 m 2 OB c b 2 a 2 m 2 and AO = m m 2 2 2 2 c b a m Area of triangle OAB = M: Find area and subs. for c. 2m 2m (d) b 2 a 2 m 2 b 2 1 a 2 m m 2m 2 2 b d b2 a2 b2 m m 2 0 a2 2 a dm 2 2 m 2 2 b a a b (*) ab 2 b 2 a (e) a 2 mc Root of quadratic: x 2 (Should be correct if quoted b a 2m2 directly) b a Using m and c b2 a 2m2 : x a 2 nd (The 2 M is dependent on using the quadratic equation). A1 M1 (2) A1 (2) M1 A1 M1 A1 (4) M1 A1 A1 M1 M1 A1 (3) 14 Marks (d) Alternative: b 2 a 2 m 2 2bam (since (b am) 2 0 ) b a m ab 2m 2 2 [M1] 2 [A1] Conclusion [A1] (e) Alternative: Begin with full eqn. b 2 a 2 m 2 x 2 2a 2 mcx a 2 c 2 b 2 0 . b In the eqn., use conditions m and c b 2 a 2 m 2 ( b 2 ) a a Simplify and solve eqn., e.g. 2 x 2 2a 2 x a 2 0 x 2 (3) [M1]
© Copyright 2026 Paperzz