EDEXCEL FURTHER PURE MATHEMATICS FP2 (R) (6668) – JUNE 2014 Question Number FINAL MARK SCHEME Scheme Marks 1. (a) 2 4r 1 2 A B 2r 1 2 r 1 2 A 2r 1 B 2r 1 A 1, B 1 2 4r 1 2 1 1 2r 1 2r 1 M1A1 (2) n 1 1 1 2 2r 1 r 1 4 r 1 r 1 2 r 1 n (b) (2) 1 1 1 1 1 1 1 1 1 ... 1 3 3 5 5 7 2n 1 2n 1 2n 1 M1A1ft 2n 1 1 2n 1 n 4r r 1 1 2 1 n 2n 1 * A1 (3) [5] 2 3x 5 2 0 x 3x 2 5 x 2 0 x 3x 1 x 2 0 x (or <) or mult through by x2 (or <) or x 3x 1 x 2 0 1 CVs x , 2 3 x=0 1 x , 0 x 2 or in set language (with curved brackets for A1) 3 Special case If „ used deduct final mark only. 1 M1 A1 B1 M1A1 (5) [5] EDEXCEL FURTHER PURE MATHEMATICS FP2 (R) (6668) – JUNE 2014 Question Number FINAL MARK SCHEME Scheme Marks 3. (a) dy 2 y tan x e 4 x cos 2 x dx 2 tan x dx e e 2ln sec x sec2 x or sec 2 x 1 cos2 x M1A1 dy 2 y tan x sec 2 x e 4 x cos 2 x sec 2 x dx d y sec 2 x e 4 x dx 1 y sec 2 x e 4 x c 4 1 y e 4 x c cos 2 x 4 dM1 B1ft( y sec2 x ) M1 oe A1 (6) (b) 1 y 1, x 0 1 c 4 c 3 4 y 1 4x e 3 cos 2 x oe 4 M1 A1 (2) [8] 2 EDEXCEL FURTHER PURE MATHEMATICS FP2 (R) (6668) – JUNE 2014 Question Number 4. FINAL MARK SCHEME Scheme Marks ( y )r sin 2 cos 2 sin dy 4sin 2 sin 2 cos 2 cos d 2sin 2 sin cos 2 cos 0 4sin 2 cos 1 2sin 2 cos 0 6sin 2 M1 M1A1 dM1 1 cos 0 cos 0 no solutions in range 1 6 r sin 2cos 2 sin 1 1 2 sin cos 2 1 2sin 2 1 2 6 3 6 2 1 4 Eqn. l: r sin 2 3 6 3 6 2 6 r co sec oe 0 Must be seen in exact form 9 sin ddM1A1 M1 M1 A1 [9] 5. 2 (a) d2 y 2 dy 2 2 dx y dx 2 dy d y seen 2 dx dx B1 d3 y 4 dy d 2 y 2 dy dx3 y dx dx 2 y 2 dx (b) At x 0 M1 ( and diff) A1A1 (4) 3 2 d2 y 1 9 1 2 4 2 dx 2 4 2 or 2.25 d3 y 1 1 9 1 37 5 2 3 dx 2 2 4 2 16 2 3 1 9 x 37 x y 2 x ... 2 4 2! 16 3! y 2 1.125 0.3854 2.325 A1 M1(2! or 2, 3! or 6) 1 9 37 3 x x2 x ... 2 8 96 0.5 or M1A1 A1 3 sf or better 3 (5) [9] EDEXCEL FURTHER PURE MATHEMATICS FP2 (R) (6668) – JUNE 2014 Question Number 6. (a) FINAL MARK SCHEME Scheme Marks w u i x iy ix y 1 M1 w u i 1 y ix x iy ix y 1 1 y ix M1 w u i 1 x xy xy i y y 2 x 2 1 y 2 A1 x2 y y 2 x2 1 y 2 x2 M1 1 2y y 2 x 2 y y 2 x 2 (b) y 1 A1 1 1 x i x i 2 2 u iv 1 1 i x i 1 ix 2 2 M1 1 1 x i xi 2 2 u iv 1 1 ix xi 2 2 M1 1 x i x2 4 u iv 1 2 x 4 A1 u 1 2 x 4 u v 2 1 2 x v 4 1 2 x 4 x 2 x 2 14 x 2 1 4 x2 2 M1 2 u 2 v 2 1 , Centre O (5) 1 16 12 x 2 x 2 x 4 1 4 x2 2 * 1 M1 M1,A1 (6) [11] 4 EDEXCEL FURTHER PURE MATHEMATICS FP2 (R) (6668) – JUNE 2014 Question Number 7. (a) FINAL MARK SCHEME Scheme cos i sin 5 Marks cos5 i sin 5 B1 5 4 3 2 cos i sin 2! 5 4 3 2 5 4 3 2 3 4 5 cos isin cos i sin i sin 3! 4! cos5 5cos 4 i sin cos5 5i cos 4 sin 10cos3 sin 2 M1 A1 10i cos 2 sin 3 5cos sin 4 i sin 5 sin 5 5cos 4 sin 10cos 2 sin 3 sin 5 5 1 sin 2 sin 10 1 sin 2 sin 3 sin 5 2 * sin 5 16sin 5 20sin 3 5sin (b) 1 1 sin 5 2 2 5 210, 330, 570, 690, 930, 1050, 1290 (or in radians) Or 210, 570, 930, 1290, 1650 Let x sin 16 x5 20 x3 5 x 42, 66, 114 , 138 , 186, 210, 258 (or in radians) M1 A1 (5) M1 A1, A1 dM1(at least 2 values) Or 42, 114, 186, 258, 330 sin 0.669, 0.914, 0.105, 0.5, 0.978 (c) 4 0 4 0 1 4sin 5sin d 4 sin 5 5sin d 5 3 A1 (5) M1 1 1 4 cos 5 5cos 4 5 0 A1 1 1 5 1 cos 5cos 5 4 5 4 4 5 1 1 1 5 4 4 4 5 Ö 2 Ö 2 5 13 Ö 2 6 20 5 M1 A1 (4) [14] 5 EDEXCEL FURTHER PURE MATHEMATICS FP2 (R) (6668) – JUNE 2014 Question Number 8. (a) Scheme Marks x ez dx dz ez dy dy M1 dy dy e z dx dz A1 d2 y dy z d 2 y dz 1 dy d 2 y z dz e e dx 2 dx dz dz 2 dx x 2 dz dz 2 M1A1A1 x2 d2 y dy 2 x 2 y 3ln x 2 dx dx 1 dy 1 d 2 y 1 dy x2 2 2 2 2x 2 y 3z x dz x dz x dz (b) FINAL MARK SCHEME d 2 y dy 2 y 3z dz 2 dz Aux eqn: m 2 m 2 0 M1 A1 (7) m 2 m 1 0 m 2, 1 M1A1 y Ae2 z Be z CF: PI: Try A1 y az b dy a dz d2 y 0 dz 2 a 2 az b 3z 3 3 a , b 2 4 Complete soln: (c) M1 3 3 y Ae 2 z Be z z 2 4 3 3 y Ax 2 Bx ln x 2 4 A1A1 (6) B1 ft (1) [14] 6
© Copyright 2026 Paperzz