Discrete Systems I Lecture 02 Combinational Logic Profs. Koike and Yukita Preparations for Lesson 02 Collection of Key Expressions • Any function is realized in terms of primitive functions. • There are several different ways of connecting primitive functions to create the same function. • These are called different realizations of a function. 2 Preparation Task 1 Complete the truth tab le for each of the following expression s. x y z ( x y) z 0 0 0 x y z ( x y) ( x z) 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 3 Preparation Task 2 Find a circuit diagram that corresponds to each function given in Task 1. 4 AND and NOT x y x y Read as “NOT x AND y” 5 Step by step construction of a truth table x y x 0 0 1 x y x x y x y x y 0 0 1 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 0 1 1 0 6 Grouping with parentheses ( x y) x 7 Step by step construction of a truth table x y x y x y ( x y) x 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 0 1 8 With split y ( x y) ( y z) 9 Step by step construction of a truth table x y y 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 1 x y z y z ( x y) ( y z) 10 Exercise 2.1A For each of the following Boolean algebraic expressions: (a) draw the corresponding circuit diagram and (b) write the truth table. Use extra columns in the truth tables to keep track of intermediate results. x y 6. ( x y ) ( y z ) 2. ( x y ) z 7. ( x y ) ( x y ) 3. ( x y ) x 8. x y 4. x x 9. (( a b) c) (c d ) 1. 5. x ( y ( x z )) 10. (( x y ) ( x z )) ( x ( y z )) 11. ( x y ) (( x y ) ( x y )) 11 Exercise 2.1B For each of the following circuit diagrams: (a) write the corresponding Boolean algebraic expression and (b) write the truth table. Use extra columns in the truth tables to keep track of intermediate results. 12. 14. 13. 15. 12 Exercise 2.1B continued 16. 17. 18. 13 Exercise 2.1D (C is intentionally skipped) Write the algebraic expression s of the functions whose truth tab les are presented in 20, 21, and 22. 20. x 21. y x y 22. x y 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 Notation: Generalized AND and OR that take more than two inputs. Is defined by Is defined by 15 Example ( x y z) ( x y z) ( x y) 16 Truth table for the example x y x y z x y z 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 0 1 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 x y z y z x y ( x y z) ( x y z) ( x y) 17 Exercise 2.2 A. For each of the Boolean algebraic expression s : (a) draw the correspond ing circuit diagram and (b) write the truth tab le. Use extra columns in the truth tab les to keep track of intermedia te results. 1. a b c d 4. ( x y z) ( x z) 2. (a b c) (b c) (a c) 5. (a b c) 3. ( x y ) ( x y ) ( x y ) 6. (a b c) a b B. Compare the outputs of the functions given in 5 and 6. Interpret the result. 18 Exercise 2.2 C. For each of the following circuit diagram write (a) the correspond ing Boolean algebraic expression s and (b) the truth tab le. Use extra columns in the truth tab les to keep track of intermedia te results. D. Compare the outputs of the functions given in 7, 8, and 9. 19
© Copyright 2026 Paperzz