Organization of hydrogen energy technologies training No. ESF/2004/2.5.0-K01-045 Main organization - Lithuanian Energy Institute Partner - Vytautas Magnus University I was attending in training program on EDX measurements technique and Profilometry analysis of the experimental results in the Metallurgic Physics Laboratory, in Poitiers University, France. 2005.10.02 - 2005.10.31 Outline of the presentation: How EDX Works Profilometer effect Glancing angle XRD measurements Discussions How EDX Works (1) When an incident electron beam hits atoms of the sample, secondary and backscattered electrons can be emitted from the sample surface. These are not the only signals emitted from the sample. How EDX Works (2) For instance, if the inner shell (the K shell) electron of an iron atom is replaced by an L shell electron, a 6400 eV K alpha X-ray is emitted from the sample How EDX Works (3) Or, if the innermost shell (the K shell) electron of an iron atom is replaced by an M shell electron, a 7057 eV K beta X-ray is emitted from the sample. How EDX Works (4) Or, if the L shell electron of an iron atom is replaced by an M shell electron, a 704 eV L alpha X-ray is emitted from the sample. How EDX Works (5) An EDX Spectrum of Iron would have three peaks; An L alpha at 704 eV, a K alpha at 6400 eV, and a K Beta at 7057 eV. How EDX Works (6) The X-rays are emitted from a depth equivalent to how deep the secondary electrons are formed. Depending on the sample density and accelerating voltage of the incident beam, this is usually from 1/2 to 2 microns in depth. How EDX Works (7) The spectrum is of a high temperature nickel based alloy composed of nickel, chromium, iron, manganese, titanium, molybdenum, silicon, and aluminium. PROFILOMETRY (1) A profile is, mathematically, the line of intersection of a surface with a sectioning plane which is (ordinarily) perpendicular to the surface. It is a two-dimensional slice of the three-dimensional surface. Almost always profiles are measured across the surface in a direction perpendicular to the lay of the surface. PROFILOMETRY (2) The average roughness, Ra, is an integral of the absolute value of the roughness profile. It Is the shaded area divided by the evaluation length, L. Ra is the most commonly used roughness PROFILOMETRY (3) The more complicated the shape of the surface we want and the more critical the function of the surface, the more sophisticated we need to be in measuring parameters beyond Ra. PROFILOMETRY (4) Measurement Display Range: 200 Å to 655,000 Å Vertical Resolution: 5 Å Scan Length: 50 microns to 30 mm Scan Speed Ranges: Low (50 sec/scan), Medium (12.5 sec/scan), High (3.12 sec/scan) Leveling: Manual, 2 point programmable or cursor leveling Stylus Tracking Force: adjustable from 10 mg to 50 mg (0.1 mN to 0.4 milliNewtons) Maximum Sample Thickness: 20 mm (0.75") Sample Stage Diameter: 127 mm (5") Sample Stage Translation (from center): X axis = +/- 10 mm; Y axis = + 10 mm/- 70 mm Sample Stage Rotation: continuous 360 deg Maximum Sample Weight: 0.5 kg (1 lb) Warm-up Time: 15 minutes for maximum stability Sample thickness Number of Name of the Thickness of the sample Thickness of the sample Samples Sample trough the step in the region of the crash 1 SandiaSi 159H 0,2081 2 SandiaSi 162H 0,8653 3 SandiaSi 153H 0,3002 4 SandiaSi 160H 0,5 5 SandiaSi 154H 0,3354 6 SandiaSi 166H 0,1486 7 SandiaSi 178 0,2385 8 SandiaL600 155VH 0,8362 9 SandiaSi 163H 0,4298 SandiaL600 160 1,7968 10 0,7866 Comparison of high and low thickness samples SandiaSi 162H (highest thickness) 1, Al sputtering t=3min U(Al)=500V T=57 I(Al)=0,5A SandiaSi 166H 1, Al sputtering t=2min T=C U(Al)=415V I(Al)=1A SandiaL600 160 (highest thickness) 1, Al, Mg sputtering t=4min U(Al)=380V I(Al)=0,8A Upr = 100V Ipr = 0,03A 2 hydryding t=4h T=180 Upr = 100V Ipr = 0,07A 2 hydryding t=1h T= U(Mg)=360V I(Mg)=0,8A 2, Ni sputtering U(Ni)=370V I(Ni)=0,3A Sample preparation conditions U(Al)=160V I(Al)=0,25A Upr = 700V Ipr = 50-100mA U(Al)=215V I(Al)=0,5A 3, Al sputtering t=1min T=C t=5s U(Al)=400V Upr = 100V I(Al)=0,5A Ipr = 0,02A SandiaL600 160 1 Comparison of high and low thickness samples 0 -5000 -10000 -15000 -20000 -25000 scaning lenght 200-500 1. Deposited thickness measured in the crash region - 1,7968 μm SandiaSi162H 2 SandiaSi 166H 3 18000 8000 16000 7000 14000 6000 12000 5000 10000 4000 8000 scaning lenght 2mm 2. Deposited thickness measured trough the step - 0,8653 μm 1935.8 1851.7 1767.5 1683.3 1515 1599.1 1430.8 1346.6 1262.5 1178.3 1010 1094.1 925.8 841.6 757.5 673.3 505 589.1 420.8 336.6 252.5 168.3 0 1939.8 1851.7 1763.5 1675.3 1587.1 1498.9 1410.8 1322.6 1234.4 1146.2 969.9 1058.1 881.7 793.5 705.4 529 617.2 440.8 352.7 264.5 0 -2000 176.3 1000 0 0 2000 2000 88.1 4000 84.1 3000 6000 scaning lengh 2mm 3. Deposited thickness measured trough the step - 0,1486 μm Sample roughness Number of Name of the Samples Sample Sample Roughness Corner of the sample midle of the sample Corner of the sample 1 SandiaSi 159H 0,1644 0,5469 0,4634 2 SandiaSi 162H 0,0761 0,05 0,076 3 SandiaSi 153H 0,1075 0,1496 0,1052 4 SandiaSi 160H 0,0423 0,0594 0,0641 5 SandiaSi 154H 0,0522 0,0774 0,0616 6 SandiaSi 166H 0,0186 0,0179 0,014 7 SandiaSi 165H 0,0086 0,0169 0,0247 8 SandiaSi 164H 0,1063 0,0842 0,0866 9 SandiaSi 155H 0,0051 0,0095 0,0129 10 SandiaSi 163H 0,0287 0,0258 0,0178 11 SandiaSi 167H 0,0063 0,0027 0,0031 12 SandiaSi 171 0,0127 0,0081 0,0101 13 SandiaSi 178 0,0073 0,0154 0,0089 14 SandiaSi 176 0,015 0,0142 0,0133 15 SandiaL600 160 0,251 0,0192 0,0166 Comparison of high and low roughness samples SandiaSi 159H 1, Al sputtering t=5min U(Al)=500V T=61,8 I(Al)=1A 2 hydryding Ubios = 100V t=1h Ibios = 0,03A T=320 SandiaSi 167H 1, Al sputtering t=20s U(Al)=520V T=58C I(Al)=1A 2 hydryding Ubios = 100V t=2h Ibios = 0,05A T=95C U(Al)=215V I(Al)=0,5A SandiaSi 155H 1, Al sputtering t=5min U(Al)=420V I(Al)=0,5A 2 hydryding Ubios = 100V t-15min Ibios = 0,05A pH=1,5termo U-Dudonio I-Dudonio U(Al)=160-250V Ubios = 700-950V I(Al)=1A Ibios = 0,18A Sample preparation conditions 3, Al sputtering t=10s U(Al)=500V I(Al)=0,5A Ubios = 100V Ibios = 0,05A SandiaSi 159H 1 High roughness sample 70000 60000 50000 40000 30000 20000 10000 1939.8 1851.7 1763.5 1675.3 1587.1 1498.9 1410.8 1322.6 1234.4 1146.2 969.9 1058.1 881.7 793.5 705.4 529 617.2 440.8 352.7 264.5 176.3 0 88.1 0 -10000 scaning length 0 - 1600 1. Roughness of deposit in the corner of the sample scanning interval 100 - 1600 mikrometro is equal 0,4634 μm SandiaSi 159H 2 SandiaSi 159 H 3 60000 10000 50000 8000 6000 40000 4000 30000 2000 20000 0 10000 -2000 1939.8 1851.7 1763.5 1675.3 1587.1 1498.9 1410.8 1322.6 1234.4 1146.2 1058.1 969.9 881.7 793.5 705.4 617.2 529 440.8 352.7 264.5 176.3 0 88.1 0 scaning lengh 2mm 2. Roughness of deposit in the centre of the sample is equal 0,5469 μm -4000 -6000 scaning lengh 0-650 mikrometro 3. Roughness of deposit in the corner of the sample scanning interval 0 - 650 μm is equal 0,1644 μm SandiaSi 167H 1 Low roughness sample 2500 2000 1500 1000 500 0 1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 scanning lengh 1. Roughness of deposit in the corner of the sample scanning interval 0 - 1000 μm is equal 0,0063 μm SandiaSi 167H 3 Sandia Si 167H 2 3500 0 3000 -200 2500 -400 2000 -600 -800 1500 -1000 1000 -1200 500 -1400 0 1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253 scanning lengh 2. Roughness deposit in the centre of the sample scanning interval 1000-2000 μm is equal 0,0027 μm -1600 scanning lengh 3. Roughness deposit in the corner of the sample scanning interval 500 - 2000 μm is equal 0,0031 μm Discussion SandiaSi162H 1 18000 16000 14000 12000 10000 8000 6000 4000 2000 1939.8 1851.7 1763.5 1675.3 1587.1 1498.9 1410.8 1322.6 1234.4 1146.2 969.9 1058.1 881.7 793.5 705.4 529 617.2 440.8 352.7 264.5 176.3 0 88.1 0 -2000 scanning lengh 2mm Steps of the scanning sample: 0 – 400 deposit; accumulation of deposit; step (1500); substrate (1600-2000) In optical microscope we can see that there is rise and there is no perpendicular corner. The thickness of the deposit in this area is about 1 μm ?We can see two steps it seems that everything concentrates in the corner of the deposit? And how it can be that our deposit (0-1600) is lower than our substrate (1600-2000)? Discussion SandiaSi 160H 1 20000 Its seen three shells : From 0-730 μm there is deposit ; step in the interval 730-1062 μm Before the second step in the interval 1198 - 1362 there is rise witch height is 0.6 μm ; Before the third step, starts from 1474 μm there is rise 15000 10000 witch height is 0.5 μm 5000 . 0 0 164.3 328.6 492.9 657.3 821.6 985.9 1150.3 1314.6 1478.9 1643.2 1807.6 1971.9 -5000 scanning lengh 2m m ? Is it possible that it happens because - when our sample is on holder in the corners the particles hit the holder losing their energy and then concentrate between the sample and the holder? It seems that our holder is like a barrier for particle motion and because of this we see the rises. Discussion SandiaSi 154H 2 4000 3000 2000 1000 969.9 925.8 881.7 837.6 793.5 749.4 705.4 661.3 617.2 529 573.1 484.9 440.8 396.7 352.7 308.6 264.5 220.4 176.3 88.1 132.2 0 -1000 44 0 -2000 -3000 scanning lengh 2mm In this case we can see that our deposit is lower then the substrate and it seems that it goes into substrate Sample preparation conditions SandiaSi 160H 1, Al sputtering t=3min U(Al)=500V T=68C I(Al)=1A 2 hydryding Ubios = 100V t=4h Ibios = 0,1A T=320 SandiaSi 154H 1, Al sputtering t=5min U(Al)=400V I(Al)=0,5A 2 hydryding (Ar+H2) Ubios = 100V pAr=0,5termo U-Dudonio Ibios = 0,05A pH=1,5termo I-Dudonio U(Al)=200V I(Al)=0.5A Ubios = 700-900V Ibios = 0,01A t-16min T=180C EDX Sandia Si 171 1 Al Mg deposit t=3min U(Al)=380V I(Al)=0,7A U(Mg)=370V I(Mg)=0,7A Sample preparation conditions Corner 12 Scanning points other 6 middle 0 other -6 corner -12 Masse(%) C 34,14 9,66 10,12 11,39 14,92 6,680 O 49,46 24,69 21,74 19,70 20,03 8,476 Mg 12,14 44,22 46,19 46,88 44,42 7,974 Al 4,26 21,43 21,94 22,04 20,64 3,347 Si 0,00 0,00 0,00 0,00 0,00 0,000 Cr 0,00 0,00 0,00 0,00 0,00 0,000 Mn 0,00 0,00 0,00 0,00 0,00 0,000 Fe 0,00 0,00 0,00 0,00 0,00 0,000 Ni 0,00 0,00 0,00 0,00 0,00 0,000 Mo 0,00 0,00 0,00 0,00 0,00 0,000 26,48 Percentage of materials in all scanning points. Procentige Procentige Procentige Procentige including C without C without O without C and O at% at% at% 25,2% 32,0% 30,1% 12,6% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 1,00 at% 37,11% 42,81% 40,28% 44,30% 70,43% 16,91% 18,60% 29,57% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 1,00 100,00% 100,00% Scaning Mg points 60,00% procentige 12 18,43% 6 43,76% 0 46,66% -6 48,50% -12 47,53% 50,00% 40,00% 30,00% 20,00% 10,00% 0,00% -15 -10 -5 0 5 10 15 25,0000% Scaning points Al procentige 12 6 0 -6 -12 20,0000% 6,48% 19,11% 19,97% 20,54% 19,90% 15,0000% 10,0000% 5,0000% -18,00 -12,00 -6,00 0,0000% 0,00 6,00 12,00 18,00 Mg and Al percentage separate in all scanning points EDX Sandia Si 153H 1 Al sputtering t=7min T= U(Al)=400V I(Al)=1A Upr = 100V Ipr = 0,06A 2 activation t=2min Upr = 900V pd=6termoAr Ipr = 10-60mA 3 hydryding t=30 min Upr = 900V Ipr = 10-100mA Sample preparation conditions Scaning points 90,0000% Al procentige 12 6 0 -6 -12 88,0000% 86,0000% 67,10% 87,30% 88,90% 88,30% 89,00% 84,0000% 82,0000% 80,0000% 78,0000% 76,0000% 74,0000% 72,0000% 70,0000% 68,0000% 66,0000% 64,0000% 62,0000% Mg and Al percentage separate in all scanning points -18,00 -12,00 60,0000% -6,00 0,00 6,00 12,00 18,00 EDX Sandia Si 160H 1 Al sputtering t=3min T=68 U(Al)=500V I(Al)=1A Ub io s = 100V Ib io s = 0,1A 2 hidryding t=4h T=180 U(Al)=200V I(Al)=0,5A Ub io s = 700-950V Ib io s = 0,01A Sample preparation conditions Scanning points Al presentige 12 6 0 -6 -12 14,0000% 12,0000% 1,50% 4,40% 2,04% 3,70% 14,50% 10,0000% 8,0000% 6,0000% 4,0000% Al percentage separate in all scanning points 2,0000% -18,00 -12,00 -6,00 0,0000% 0,00 6,00 12,00 18,00 EDX Sandia Q 190 1 Al Mg sputterong t=4min U(Al)=380V I(Al)=0,8A 2 Ni sputtering U(Ni)=370V I(Ni)=0,3A U(Mg)=360V I(Mg)=0,8A t=5s Sample preparation conditions Corner 12 Scanning points other 6 middle 0 other -6 corner -12 Masse(%) C 5,15 4,82 4,93 5,49 5,99 2,196 O 1,73 2,74 2,84 2,43 1,82 0,723 Mg 58,22 59,58 60,20 60,29 60,35 12,285 Al 34,17 32,26 31,46 31,25 31,45 5,952 Si 0,00 0,00 0,00 0,00 0,00 0,000 Cr 0,00 0,00 0,00 0,00 0,00 0,000 Mn 0,00 0,00 0,00 0,00 0,00 0,000 Fe 0,00 0,00 0,00 0,00 0,00 0,000 Ni 0,73 0,60 0,58 0,54 0,39 0,048 Mo 0,00 0,00 0,00 0,00 0,00 0,000 21,20 Percentage of materials in all scanning points Procentige Procentige Procentige Procentige including C without C without O without C and O at% at% at% 10,4% 3,4% 57,9% 28,1% 0,0% 0,0% 0,0% 0,0% 0,2% 0,0% 1,00 at% 10,72% 3,80% 64,63% 59,98% 67,18% 31,31% 29,06% 32,55% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,25% 0,24% 0,26% 0,00% 0,00% 0,00% 1,00 100,00% 100,00% EDX Sandia Q 190 Scanning points 70,0000% Mg presentige 10 5 0 -5 -10 60,0000% 63,33% 63,99% 64,66% 65,28% 65,88% 50,0000% 40,0000% 30,0000% 20,0000% 10,0000% -12,00 Scanning points 0,0000% 0,00 -6,00 Al presentige 10 5 0 -5 -10 6,00 12,00 36,00% 34,00% 32,00% 30,00% 28,00% 26,00% 24,00% 22,00% 20,00% 18,00% 16,00% 14,00% 12,00% 10,00% 8,00% 6,00% 4,00% 2,00% 0,00% 33,49% 31,22% 30,45% 30,48% 30,93% -18 -14 -10 -6 -2 2 6 10 14 Mg and Al percentage separate in all scanning points 18 EDX Sandia Q 190 Scanning points Ni presentige 10 5 0 -5 -10 0,35% 0,33% 0,32% 0,26% 0,24% 0,18% 0,30% 0,25% 0,20% 0,15% 0,10% 0,05% 0,00% -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 Ni percentage separate in all scanning points 6 8 10 12 14 16 18 Discussion From EDX analyze of the samples SandiaSi 171 and Sandia Si 153H we saw that percentage of analyzed materials in one corner of the sample is lower then in another. ? why. Glancing angle XRD
© Copyright 2026 Paperzz