Diapositive 1

Organization of hydrogen energy
technologies training
No. ESF/2004/2.5.0-K01-045
Main organization - Lithuanian Energy Institute
Partner - Vytautas Magnus University
I was attending in training program on EDX
measurements technique and Profilometry
analysis of the experimental results in the
Metallurgic Physics Laboratory, in Poitiers
University, France.
2005.10.02 - 2005.10.31
Outline of the presentation:
How EDX Works
Profilometer effect
Glancing angle XRD measurements
Discussions
How EDX Works (1)
When an incident electron
beam hits atoms of the
sample, secondary and
backscattered electrons can
be emitted from the sample
surface.
These are not the only
signals emitted from the
sample.
How EDX Works (2)
For instance, if the inner
shell (the K shell) electron
of an iron atom is replaced
by an L shell electron, a
6400 eV K alpha X-ray is
emitted from the sample
How EDX Works (3)
Or, if the innermost shell
(the K shell) electron of an
iron atom is replaced by an
M shell electron, a 7057
eV K beta X-ray is emitted
from the sample.
How EDX Works (4)
Or, if the L shell electron
of an iron atom is replaced
by an M shell electron, a
704 eV L alpha X-ray is
emitted from the sample.
How EDX Works (5)
An EDX Spectrum of Iron would have three peaks;
An L alpha at 704 eV, a K alpha at 6400 eV, and a K
Beta at 7057 eV.
How EDX Works (6)
The X-rays are emitted from a depth equivalent to how deep
the secondary electrons are formed.
Depending on the sample density and accelerating voltage
of the incident beam, this is usually from 1/2 to 2 microns in
depth.
How EDX Works (7)
The spectrum is of a high temperature nickel based alloy
composed of nickel, chromium, iron, manganese, titanium,
molybdenum, silicon, and aluminium.
PROFILOMETRY (1)
A profile is, mathematically, the line of intersection of a
surface with a sectioning plane which is (ordinarily)
perpendicular to the surface.
It is a two-dimensional slice of the three-dimensional
surface. Almost always profiles are measured across the
surface in a direction perpendicular to the lay of the surface.
PROFILOMETRY (2)


The average roughness, Ra, is an integral of the absolute
value of the roughness profile. It Is
the shaded area divided by the evaluation length, L.
Ra is the most commonly used roughness
PROFILOMETRY (3)
The more complicated the shape of the surface we want and
the more critical the function of the surface, the more
sophisticated we need to be in measuring parameters
beyond Ra.
PROFILOMETRY (4)
Measurement Display Range: 200 Å
to 655,000 Å
Vertical Resolution: 5 Å
Scan Length: 50 microns to 30 mm
Scan Speed Ranges: Low (50
sec/scan), Medium (12.5 sec/scan),
High (3.12 sec/scan)
Leveling: Manual, 2 point
programmable or cursor leveling
Stylus Tracking Force: adjustable
from 10 mg to 50 mg (0.1 mN to 0.4
milliNewtons)
Maximum Sample Thickness: 20
mm (0.75")
Sample Stage Diameter: 127 mm
(5")
Sample Stage Translation (from
center): X axis = +/- 10 mm; Y axis
= + 10 mm/- 70 mm
Sample Stage Rotation: continuous
360 deg
Maximum Sample Weight: 0.5 kg (1
lb)
Warm-up Time: 15 minutes for
maximum stability
Sample thickness
Number of
Name of the
Thickness of the sample
Thickness of the sample
Samples
Sample
trough the step
in the region of the crash
1
SandiaSi 159H
0,2081
2
SandiaSi 162H
0,8653
3
SandiaSi 153H
0,3002
4
SandiaSi 160H
0,5
5
SandiaSi 154H
0,3354
6
SandiaSi 166H
0,1486
7
SandiaSi 178
0,2385
8
SandiaL600 155VH
0,8362
9
SandiaSi 163H
0,4298
SandiaL600 160
1,7968
10
0,7866
Comparison of high and low thickness samples
SandiaSi 162H (highest thickness)
1, Al sputtering
t=3min
U(Al)=500V
T=57
I(Al)=0,5A
SandiaSi 166H
1, Al sputtering
t=2min
T=C
U(Al)=415V
I(Al)=1A
SandiaL600 160 (highest thickness)
1, Al, Mg sputtering
t=4min
U(Al)=380V
I(Al)=0,8A
Upr = 100V
Ipr = 0,03A
2 hydryding
t=4h
T=180
Upr = 100V
Ipr = 0,07A
2 hydryding
t=1h
T=
U(Mg)=360V
I(Mg)=0,8A
2, Ni sputtering
U(Ni)=370V
I(Ni)=0,3A
Sample preparation conditions
U(Al)=160V
I(Al)=0,25A
Upr = 700V
Ipr = 50-100mA
U(Al)=215V
I(Al)=0,5A
3, Al sputtering
t=1min
T=C
t=5s
U(Al)=400V Upr = 100V
I(Al)=0,5A Ipr = 0,02A
SandiaL600 160
1
Comparison of high and low
thickness samples
0
-5000
-10000
-15000
-20000
-25000
scaning lenght 200-500
1. Deposited thickness measured in the crash region - 1,7968 μm
SandiaSi162H
2
SandiaSi 166H
3
18000
8000
16000
7000
14000
6000
12000
5000
10000
4000
8000
scaning lenght 2mm
2. Deposited thickness measured trough the step - 0,8653 μm
1935.8
1851.7
1767.5
1683.3
1515
1599.1
1430.8
1346.6
1262.5
1178.3
1010
1094.1
925.8
841.6
757.5
673.3
505
589.1
420.8
336.6
252.5
168.3
0
1939.8
1851.7
1763.5
1675.3
1587.1
1498.9
1410.8
1322.6
1234.4
1146.2
969.9
1058.1
881.7
793.5
705.4
529
617.2
440.8
352.7
264.5
0
-2000
176.3
1000
0
0
2000
2000
88.1
4000
84.1
3000
6000
scaning lengh 2mm
3. Deposited thickness measured trough the step - 0,1486 μm
Sample roughness
Number of
Name of the
Samples
Sample
Sample
Roughness
Corner of the sample
midle of the sample
Corner of the
sample
1
SandiaSi 159H
0,1644
0,5469
0,4634
2
SandiaSi 162H
0,0761
0,05
0,076
3
SandiaSi 153H
0,1075
0,1496
0,1052
4
SandiaSi 160H
0,0423
0,0594
0,0641
5
SandiaSi 154H
0,0522
0,0774
0,0616
6
SandiaSi 166H
0,0186
0,0179
0,014
7
SandiaSi 165H
0,0086
0,0169
0,0247
8
SandiaSi 164H
0,1063
0,0842
0,0866
9
SandiaSi 155H
0,0051
0,0095
0,0129
10
SandiaSi 163H
0,0287
0,0258
0,0178
11
SandiaSi 167H
0,0063
0,0027
0,0031
12
SandiaSi 171
0,0127
0,0081
0,0101
13
SandiaSi 178
0,0073
0,0154
0,0089
14
SandiaSi 176
0,015
0,0142
0,0133
15
SandiaL600 160
0,251
0,0192
0,0166
Comparison of high and low roughness samples
SandiaSi 159H
1, Al sputtering
t=5min
U(Al)=500V
T=61,8
I(Al)=1A
2 hydryding
Ubios = 100V t=1h
Ibios = 0,03A T=320
SandiaSi 167H
1, Al sputtering
t=20s
U(Al)=520V
T=58C
I(Al)=1A
2 hydryding
Ubios = 100V t=2h
Ibios = 0,05A T=95C
U(Al)=215V
I(Al)=0,5A
SandiaSi 155H
1, Al sputtering
t=5min
U(Al)=420V
I(Al)=0,5A
2 hydryding
Ubios = 100V t-15min
Ibios = 0,05A pH=1,5termo
U-Dudonio
I-Dudonio
U(Al)=160-250V Ubios = 700-950V
I(Al)=1A
Ibios = 0,18A
Sample preparation conditions
3, Al sputtering
t=10s
U(Al)=500V
I(Al)=0,5A
Ubios = 100V
Ibios = 0,05A
SandiaSi 159H
1
High roughness sample
70000
60000
50000
40000
30000
20000
10000
1939.8
1851.7
1763.5
1675.3
1587.1
1498.9
1410.8
1322.6
1234.4
1146.2
969.9
1058.1
881.7
793.5
705.4
529
617.2
440.8
352.7
264.5
176.3
0
88.1
0
-10000
scaning length 0 - 1600
1. Roughness of deposit in the corner of the sample scanning
interval 100 - 1600 mikrometro is equal 0,4634 μm
SandiaSi 159H
2
SandiaSi 159 H
3
60000
10000
50000
8000
6000
40000
4000
30000
2000
20000
0
10000
-2000
1939.8
1851.7
1763.5
1675.3
1587.1
1498.9
1410.8
1322.6
1234.4
1146.2
1058.1
969.9
881.7
793.5
705.4
617.2
529
440.8
352.7
264.5
176.3
0
88.1
0
scaning lengh 2mm
2. Roughness of deposit in the centre of the sample is equal
0,5469 μm
-4000
-6000
scaning lengh 0-650 mikrometro
3. Roughness of deposit in the corner of the sample scanning
interval 0 - 650 μm is equal 0,1644 μm
SandiaSi 167H
1
Low roughness sample
2500
2000
1500
1000
500
0
1
13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241
scanning lengh
1. Roughness of deposit in the corner of the sample scanning
interval 0 - 1000 μm is equal 0,0063 μm
SandiaSi 167H
3
Sandia Si 167H
2
3500
0
3000
-200
2500
-400
2000
-600
-800
1500
-1000
1000
-1200
500
-1400
0
1
13
25
37
49
61
73
85
97 109 121 133 145 157 169 181 193 205 217 229 241 253
scanning lengh
2. Roughness deposit in the centre of the sample scanning
interval 1000-2000 μm is equal 0,0027 μm
-1600
scanning lengh
3. Roughness deposit in the corner of the sample scanning
interval 500 - 2000 μm is equal 0,0031 μm
Discussion
SandiaSi162H
1
18000
16000
14000
12000
10000
8000
6000
4000
2000
1939.8
1851.7
1763.5
1675.3
1587.1
1498.9
1410.8
1322.6
1234.4
1146.2
969.9
1058.1
881.7
793.5
705.4
529
617.2
440.8
352.7
264.5
176.3
0
88.1
0
-2000
scanning lengh 2mm
Steps of the scanning sample: 0 – 400 deposit; accumulation of
deposit; step (1500); substrate (1600-2000)
In optical microscope we can see that there is rise
and there is no perpendicular corner. The thickness of the deposit in
this area is about 1 μm
?We can see two steps it seems that everything concentrates in
the corner of the deposit? And how it can be that our deposit
(0-1600) is lower than our substrate (1600-2000)?
Discussion
SandiaSi 160H
1
20000
Its seen three shells :
From 0-730 μm there is deposit ; step in the interval
730-1062 μm
Before the second step in the interval 1198 - 1362 there
is rise witch height is 0.6 μm ;
Before the third step, starts from 1474 μm there is rise
15000
10000
witch height is 0.5 μm
5000
.
0
0
164.3 328.6 492.9 657.3 821.6 985.9 1150.3 1314.6 1478.9 1643.2 1807.6 1971.9
-5000
scanning lengh 2m m
? Is it possible that it happens because - when our sample is on holder in
the corners the particles hit the holder losing their energy and then
concentrate between the sample and the holder? It seems that our holder
is like a barrier for particle motion and because of this we see the rises.
Discussion
SandiaSi 154H
2
4000
3000
2000
1000
969.9
925.8
881.7
837.6
793.5
749.4
705.4
661.3
617.2
529
573.1
484.9
440.8
396.7
352.7
308.6
264.5
220.4
176.3
88.1
132.2
0
-1000
44
0
-2000
-3000
scanning lengh 2mm
In this case we can see that our deposit is lower then the substrate and it seems that it goes into substrate
Sample preparation conditions
SandiaSi 160H
1, Al sputtering
t=3min
U(Al)=500V
T=68C
I(Al)=1A
2 hydryding
Ubios = 100V t=4h
Ibios = 0,1A T=320
SandiaSi 154H
1, Al sputtering
t=5min
U(Al)=400V
I(Al)=0,5A
2 hydryding (Ar+H2)
Ubios = 100V pAr=0,5termo U-Dudonio
Ibios = 0,05A pH=1,5termo I-Dudonio
U(Al)=200V
I(Al)=0.5A
Ubios = 700-900V
Ibios = 0,01A
t-16min
T=180C
EDX Sandia Si 171
1 Al Mg deposit
t=3min
U(Al)=380V
I(Al)=0,7A
U(Mg)=370V
I(Mg)=0,7A
Sample preparation conditions
Corner 12
Scanning points
other 6
middle 0
other -6
corner -12
Masse(%)
C
34,14
9,66
10,12
11,39
14,92
6,680
O
49,46
24,69
21,74
19,70
20,03
8,476
Mg
12,14
44,22
46,19
46,88
44,42
7,974
Al
4,26
21,43
21,94
22,04
20,64
3,347
Si
0,00
0,00
0,00
0,00
0,00
0,000
Cr
0,00
0,00
0,00
0,00
0,00
0,000
Mn
0,00
0,00
0,00
0,00
0,00
0,000
Fe
0,00
0,00
0,00
0,00
0,00
0,000
Ni
0,00
0,00
0,00
0,00
0,00
0,000
Mo
0,00
0,00
0,00
0,00
0,00
0,000
26,48
Percentage of materials in all scanning points.
Procentige
Procentige
Procentige
Procentige
including C
without C
without O
without C and O
at%
at%
at%
25,2%
32,0%
30,1%
12,6%
0,0%
0,0%
0,0%
0,0%
0,0%
0,0%
1,00
at%
37,11%
42,81%
40,28%
44,30%
70,43%
16,91%
18,60%
29,57%
0,00%
0,00%
0,00%
0,00%
0,00%
0,00%
0,00%
0,00%
0,00%
0,00%
0,00%
0,00%
0,00%
0,00%
0,00%
0,00%
0,00%
0,00%
1,00
100,00%
100,00%
Scaning
Mg
points
60,00%
procentige
12
18,43%
6
43,76%
0
46,66%
-6
48,50%
-12
47,53%
50,00%
40,00%
30,00%
20,00%
10,00%
0,00%
-15
-10
-5
0
5
10
15
25,0000%
Scaning
points
Al
procentige
12
6
0
-6
-12
20,0000%
6,48%
19,11%
19,97%
20,54%
19,90%
15,0000%
10,0000%
5,0000%
-18,00
-12,00
-6,00
0,0000%
0,00
6,00
12,00
18,00
Mg and Al percentage separate in all scanning points
EDX Sandia Si 153H
1 Al sputtering
t=7min
T=
U(Al)=400V
I(Al)=1A
Upr = 100V
Ipr = 0,06A
2 activation
t=2min
Upr = 900V
pd=6termoAr Ipr = 10-60mA
3 hydryding
t=30 min
Upr = 900V
Ipr = 10-100mA
Sample preparation conditions
Scaning
points
90,0000%
Al
procentige
12
6
0
-6
-12
88,0000%
86,0000%
67,10%
87,30%
88,90%
88,30%
89,00%
84,0000%
82,0000%
80,0000%
78,0000%
76,0000%
74,0000%
72,0000%
70,0000%
68,0000%
66,0000%
64,0000%
62,0000%
Mg and Al percentage separate in all scanning points
-18,00
-12,00
60,0000%
-6,00
0,00
6,00
12,00
18,00
EDX Sandia Si 160H
1 Al sputtering
t=3min
T=68
U(Al)=500V
I(Al)=1A
Ub io s = 100V
Ib io s = 0,1A
2 hidryding
t=4h
T=180
U(Al)=200V
I(Al)=0,5A
Ub io s = 700-950V
Ib io s = 0,01A
Sample preparation conditions
Scanning
points
Al
presentige
12
6
0
-6
-12
14,0000%
12,0000%
1,50%
4,40%
2,04%
3,70%
14,50%
10,0000%
8,0000%
6,0000%
4,0000%
Al percentage separate in all scanning points
2,0000%
-18,00
-12,00
-6,00
0,0000%
0,00
6,00
12,00
18,00
EDX Sandia Q 190
1 Al Mg sputterong
t=4min
U(Al)=380V
I(Al)=0,8A
2 Ni sputtering
U(Ni)=370V
I(Ni)=0,3A
U(Mg)=360V
I(Mg)=0,8A
t=5s
Sample preparation conditions
Corner 12
Scanning points
other 6
middle 0
other -6
corner -12
Masse(%)
C
5,15
4,82
4,93
5,49
5,99
2,196
O
1,73
2,74
2,84
2,43
1,82
0,723
Mg
58,22
59,58
60,20
60,29
60,35
12,285
Al
34,17
32,26
31,46
31,25
31,45
5,952
Si
0,00
0,00
0,00
0,00
0,00
0,000
Cr
0,00
0,00
0,00
0,00
0,00
0,000
Mn
0,00
0,00
0,00
0,00
0,00
0,000
Fe
0,00
0,00
0,00
0,00
0,00
0,000
Ni
0,73
0,60
0,58
0,54
0,39
0,048
Mo
0,00
0,00
0,00
0,00
0,00
0,000
21,20
Percentage of materials in all scanning points
Procentige
Procentige
Procentige
Procentige
including C
without C
without O
without C and O
at%
at%
at%
10,4%
3,4%
57,9%
28,1%
0,0%
0,0%
0,0%
0,0%
0,2%
0,0%
1,00
at%
10,72%
3,80%
64,63%
59,98%
67,18%
31,31%
29,06%
32,55%
0,00%
0,00%
0,00%
0,00%
0,00%
0,00%
0,00%
0,00%
0,00%
0,00%
0,00%
0,00%
0,25%
0,24%
0,26%
0,00%
0,00%
0,00%
1,00
100,00%
100,00%
EDX Sandia Q 190
Scanning
points
70,0000%
Mg
presentige
10
5
0
-5
-10
60,0000%
63,33%
63,99%
64,66%
65,28%
65,88%
50,0000%
40,0000%
30,0000%
20,0000%
10,0000%
-12,00
Scanning
points
0,0000%
0,00
-6,00
Al
presentige
10
5
0
-5
-10
6,00
12,00
36,00%
34,00%
32,00%
30,00%
28,00%
26,00%
24,00%
22,00%
20,00%
18,00%
16,00%
14,00%
12,00%
10,00%
8,00%
6,00%
4,00%
2,00%
0,00%
33,49%
31,22%
30,45%
30,48%
30,93%
-18
-14
-10
-6
-2
2
6
10
14
Mg and Al percentage separate in all scanning points
18
EDX Sandia Q 190
Scanning
points
Ni
presentige
10
5
0
-5
-10
0,35%
0,33%
0,32%
0,26%
0,24%
0,18%
0,30%
0,25%
0,20%
0,15%
0,10%
0,05%
0,00%
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
2
4
Ni percentage separate in all scanning points
6
8
10
12
14
16
18
Discussion
From EDX analyze of the samples SandiaSi 171 and Sandia
Si 153H we saw that percentage of analyzed materials in
one corner of the sample is lower then in another.
? why.
Glancing angle XRD