1 Application of G-APDs in Muon Spin Spectroscopy 2 G-APD + plastic scintillator: some results on the time resolution A. Stoykov, R. Scheuermann, K. Sedlak NMI3 – Integrated Infrastructure Initiative for Neutron Scattering and Muon Spectroscopy, Joint Research Activity (JRA8): MUON-S. Contract: RII3-CT-2003-505925 GSI 9Feb09 G-APDs in SR Time-differential SR correlated detection of individual muons with their decay positrons (muon rates up to 4∙104 s -1). Time-integral SR only positron detection at high rate Restrictions of PMT-based detectors: presence of magnetic fields light guides • bulky construction: not good for high segmentation; • limited time resolution G-APDs: compact, finely segmented, magnetic field insensitive detectors. Development of G-APD based detectors at SS of PSI: 1. Muon-beam profile measurements (setup of the instruments and beamline optimization); 2. “Large” area detectors (tens cm2, ≤ 400 ps) for “standard” SR spectrometers; 3. Compact fast-timing detectors ( < 100 ps) for the planned 10T instrument. Muon Beam Profile Monitor for ALC instrument (28 MeV/c muon beam, up to 5 T field) 2004 10 x-, 10 y-channels, fibers Ø 1mm, spacing 10 mm 2.0 x y (cm) 1.5 1.0 0.5 no collimators, beam window 70 mm diam. 0.0 0 1 2 3 4 H (T) 0T 1T Muon beam spot size as a function of applied magnetic field 5 Old ALC (PMT-based detector system) New ALC (G-APD based detector) New ALC: mounting of the detector module in the solenoid New ALC: detector module (view along muon beam) 2007 New ALC: positron counter SSPM 0701BG EJ-204A (120x28x5 mm3) (120x33x5 mm3) BCF-92 (Ø 1mm) PDE, at 490nm Operating voltage Gain Temp. coeff. of Gain Number of micro-cells Active area Detection of mips (U = 42.9V, I0 = 7.1A) 2x SSPM 0701BG Amplifier gain ~20 bw ~ 70 MHz Photonique SA ------- 30 % 20 V ≤ 4∙105 < 1.0 %/C 3 mm 560 Ø1.1 mm Amplitude vs. Rate A / Amax 1.0 ~ 500 mV ~ 150 cells ~ 130 phe 0.5 F13: U = 42.9V, I0 = 7.1A 0.0 3 10 Counts 12 ~ 450ps 1 ~ 320ps 100 0 -3 -2 -1 0 t (ns) 1 2 5 10 -1 Count rate ( s ) Time resolution 200 4 10 3 6 10 New ALC: operation Time-differential mode Time-integral (ALC) mode 0.8 5 0.7 Ag, zero field 10 0.000 -0.004 0.6 Counts Asymmetry 4 10 -0.008 sp658 -0.012 1.90 1.95 2.00 2.05 2.10 2.15 0.5 0.4 4PBA/MeOH, RT sp652 : 0 - 4.50 T, = 0.050 T sp658 : 1.90 - 2.15 T, = 0.001 T 0.3 0 1 2 3 Asym = (Nbw – Nfw) / (Nbw + Nfw) COO- C3H7 -4 2 10 Bg Bg / N0 = 2*10 1 10 B (Tesla) N0 exp( t / ) 3 10 0 5 10 Time (s) 15 20 Muon counter: replaces one of the positron counters in TD-mode 4-propyl benzoate / methanol (CH3OH) Mu addition to ring 2 radicals, not distinguishable in solution A challenge of muon spin rotation experiments in 10T Detection of 1.35 GHz muon spin precession signal in 10T ≤ 140ps Measured asymmetry (% of max.) Muon-spin precession frequency (GHz) 0.0 0.4 0.8 Per counter ( + / e+ ): ≤ 100ps 1.2 100 time resolution = 65ps G-APD based prototype detector 80 140 60 Upper limit for a 10 T spectrometer 50 40 170 7T HiTime instrument at TRIUMF (PMT- based detector system) 400 “Standard” SR spectrometer 20 0 0 2 4 6 8 10 Magnetic field (Tesla) PMT based scintillation counters: • in high magnetic fields the time resolution is limited due to attenuation and broadening of the light pulses in the necessary light guides. Fast timing muon and positron counters (prototypes) H (0 -- 4.8 T) 2008 + (e+ ) 25 M1 (P1) M2 (P2) Test setup: the muon (positron) counters are assembled on a supporting plate inserted into the warm bore of a 5T solenoid. The muon (positron) beam momentum is 28 MeV/c. (1) Positron counter: EJ-232 10x10x5mm; (2) Muon counter: EJ-232 ø8x0.3mm in a 10x10x2mm frame (BC-800); (3) two G-APDs of type MPPC S10362-33-050 (3x3 mm2, Hamamatsu) PDE > 30% at 390 nm; M ~ 7*105; U ~ 70 V; 1/M*dM/dT ~ 8% / 0C (4) scintillator + photosensor in a light tight box; (5) broad band amplifier (gain ~13, bandwidth ~ 600 MHz). Time resolution M1-M2 (P1-P2) 400 H = 4.8T P1: Amplitude vs. Rate 1.0 200 0.8 = 60 ps 0 A / Amax Counts M1 -- M2 200 P1 -- P2 0.6 0.4 Detection of muons (M1) and positrons (P1) in 4.8 T. 0.2 = 65 ps 0 -0.2 0.0 0.2 t (ns) 46 ps per counter ( + / e + ) 0.0 0.01 0.1 1 Count rate (MHz) 10 Summary: We used G-APDs to build several types of detectors for SR applications. Realization of such detectors with PMTs would have been either more difficult or impossible. This shows a large potential of G-APDs for the development of the SR experimental technique. 2007 2004 < 50 ps in 4.8 T 2008 (E) G-APD + plastic scintillator : time resolution vs. deposited energy PMT = 19 ps / MeV0.5 -- best time resolution (NE111 + XP2020UR-M) [M.Moszynski, NIMA 337 (1993) 154] (E) : measurement setup Scint.: BC422 (3x3x2 mm3) readout via 3x2 mm2 face G-APDs: MPPC 33-050 (3x3 mm2, 400 pixels/mm2) A – MAR—amplifier; CFD – PSI CFD-950; DS0 – LeCroy WavePro 960 (2 GHz ). Aout (mV) 2MAR-6 linearity (Ratt = 1k) 1200 800 400 Aout = A max*(1 - exp (-k Ain / Amax )) Amax = 4757 mV, k = 13.2 0 0 MAR-6 amplifier: Gain = 13 (Ratt = 1k) , bw ≈ 600 MHz 20 40 60 80 Ain (mV) (E) : raw data Counts (normalized) 1.0 Amplitude spectra of C1,C2 Selected amplitude windows C1 0.5 ampl. window (fixed) 1.0 C2 0.5 ampl. window (scan) 0.0 0 50 Time difference t1 – t2 (A1, A2 in selected windows) 200 12 = 41 ps 0 -0.1 A (pC) 140 120 100 80 1 = 29 ps -0.2 150 Time Resolution of C2 vs. Amplitude (win1 – fixed, win2 – scan) 0.0 0.1 0.2 (ps) Counts 400 100 60 40 t (ns) 20 6 8 10 20 A (pC) 40 60 80 (E) : A Nphe E A Alin 1. Correct for the non-linearity of the amplifier: 2. Calculate the number of firing cells: Ncell = Alin / A1c 3. Calculate the number of photoelectrons: Nphe = (m / α) ln (1 - Ncell / m) m = 2400 (cells per 6 mm2); α = A1e / A1c = 1.12 4. Establish the correspondence between Nphe and E: Nphe = 2270 E n (Nphe ) – experimental data (C2, 90Sr reversed) after the corrections; n (Esim ) – spectrum of deposited energies simulated in GEANT4. 0 Counts (norm.) 1.0 500 750 1000 1500 C2 90 Sr -- rev. Nphe Nphe Esim 0.5 5. σ(A) σ(Nphe), σ(E) 0.0 0.0 0.2 0.33 0.4 0.6 Esim (MeV) (E) : results BC422 + MPPC 33-050 200 400 600 800 Nphe 140 120 2270 phe/MeV PDE ≥ 27% 100 80 (ps) BC422 60 3x3x2 mm3, Teflon MPPC 33-050 (3x3 mm2 ) 40 = 18 ps / E 20 0.02 70.13 V, 1.0 A 0.5 Amplifier (2MAR-6) Cin = 56pF, Ratt = 1k 0.04 0.06 0.08 0.1 0.2 0.4 E (MeV) PMT: = 19 ps / MeV 0.5 best time resolution [M.Moszynski, NIMA 337 (1993) 154]. NE111 (d25 x 10 mm, Teflon reflector) + XP2020UR-M BC422 ≡ NE111 fastest plastic 8400 phe/MeV 370 nm 0.35 / 1.4ns
© Copyright 2026 Paperzz