NTHU ESS5850 F. G. Tseng Micro System Design Fall/2016, 9-1, p1 Lecture 9-1 Thermal Actuators !! Thermal Actuator fundamental t W Δl l CTE: Coefficient of Thermal Expansion (linear range) CTE : α ≡ Δl 1 l ΔT (9-1) where: l is the length, ΔT is the temperature difference Notice: a.! CTE is approximately constant for a considerable rage of temperature (in general, the coefficient increases with an increase of temperature) b.! For homogeneous and isotropic material, the coefficient applied to all dimensions (directions). c.! CTE of some materials: NTHU ESS5850 F. G. Tseng Micro System Design Fall/2016, 9-1, p2 From Eq. (9-1), for the thermal induced strain: ε therm Δl ≡ = αΔT l (9-2) For a beam clamped between two walls, the induced stress and total force are: Ftherm = Aσ = AEε therm = WtEαΔT (9-3) Heat For a silicon beam, α=2.6×10-6 m/m°C, l=100 µm, W=t=10 µm, NTHU ESS5850 F. G. Tseng Micro System Design Fall/2016, 9-1, p3 and ΔT=100 °C, E~1011 Pa, Cp,si=0.714 KJ/Kg°C F=WtEαΔT=2.6 mN Δl=lαΔT=26 nm "! large force, small displacement!! Input energy: F Win= Cp,simΔT=714 pJ x Output energy: ΔL ΔL 0 0 Wout = ∫ Fdx = ∫ AEx AE dx = (ΔL) 2 = 26.45 L 2L Efficiency: 3.7 % => Low efficiency!! pJ NTHU ESS5850 F. G. Tseng Micro System Design Fall/2016, 9-1, p4 How to magnify the displacement? 1.! Extending arm x X Displacement increases by X/x, but force decreases by x/X (for rigid vertical beam, and heating only the right side horizontal bar) 2.! Different beam width Hot Arm A Si Flexure beam Cold Arm Power Dissipation=I2R => P ∝ R, here R= ρA L and I=constant => Hot arm has much larger resistance A’ Metal Poly1 Poly2 NTHU ESS5850 F. G. Tseng Micro System Design Fall/2016, 9-1, p5 Hot θ/2 Deflection L R Cold θ Arc length = Rθ = Hot Arm length Chord length L= (R sin(θ/2))×2= cold arm length ΔL = Rθ − 2 R sin ΔL = L θ − 2 sin 2 sin θ θ 2 θ 2 = αΔT 2 Use Taylor expansion => D = L × sin θ θ = 24αΔT θ θ = (2 R ⋅ sin ) sin 2 2 2 θ θ (2 R ⋅ sin ) sin D 2 2 ≈ 12 ≈ 160 = ΔL θ θ θ3 R(θ − 2( − )) 2 48 => Magnify displacement to 160 times !! for ΔT = 100°C NTHU ESS5850 F. G. Tseng Micro System Design Fall/2016, 9-1, p6 3.! Bimorph beam (ii) Composite plate Al Al Si T T Al: EAl=73Gpa; Si: Esi=10e11Pa; Al=22.5e-6 m/m/ Si=2.3e-6 m/m/ Analysis: Assume 1.Al much thinner than Si 2.Biaxial Stress 3.Plane Remain plane (No warp) 3D isotropic system: y x x y NTHU ESS5850 F. G. Tseng Micro System Design Fall/2016, 9-1, p7 1 σ x − ν (σ y + σ z ) E 1 ε y = σ y − ν (σ z + σ x ) E 1 ε z = σ z − ν (σ x + σ y ) E εx = where v [ ] [ ] [ ] :Poisson’s ratio Biaxial stress => σz =0 σx =σ y 1 −ν 2νσ ε = ε = σ ε = − y x( ORG ) z => x E E E σ = ε x # Replace => x 1 −ν E with E 1 −ν NTHU ESS5850 F. G. Tseng Micro System Design Fall/2016, 9-1, p8 Al film Δl l tf Ff ts σf Al Film tf Mf σs z ts/2 Ms ρ σs Si θ what’s is ρ ? and Mf ? (1)!Geometry Si deformation at Boundary= Al film deformation ! + !β s ΔT + Δ! = ! + !β f ΔT − !ε f Δ! ! ! ts = Δ ! = ts Here: => ρ ρ2 2 ) 1 −ν & εf =' $ σf ( E %f t s ( 1 −ν % +& # σ f = (β f − β s )ΔT 2ρ ' E $ f (1) NTHU ESS5850 F. G. Tseng Micro System Design Fall/2016, 9-1, p9 (2)!Moment balance M f = σ f ⋅W ⋅ t f ⋅ ts M s = w∫ t s2 − 2 ts 2 (2) 2 E z ) & zσ (z )dz = w∫ t s2 ' $ dz − 2 ( 1 −ν % ρ ts (3) 3 ) E & wts =' $ ( 1 − ν % s 12 ρ M f = Ms 2 ) E & ts σf =' $ ( 1 − ν % s 6 ρt f (4) (4)=>(1) ts ( 1 − ν % ( E % ts2 +& = (β f − β s )ΔT # & # 2 ρ ' E $ f ' 1 − ν $ s 6 ρt f t s ( 1 − ν % ( E % t s2 +& # & # 2 ' E $ f ' 1 − ν $ s 6t f ρ= (β f − β s )ΔT (3)!Force (5) 3 ( E % wt s Mf =& # ' 1 − ν $ s 12 ρ 3 M ( E % wts F ≈ s =& # ! ' 1 − ν $ s 12 ρ! Force generated by thermal deflection (6) NTHU ESS5850 F. G. Tseng Micro System Design Fall/2016, 9-1, p10 (4)!Displacement d 2z 1 = 2 dx ρ 1 2 z= x + c1 x + c2 2ρ dz =0 at x=0, z = 0 dx x2 z= 2ρ for x=! !2 z= 2ρ (7) NTHU ESS5850 F. G. Tseng Micro System Design Fall/2016, 9-1, p11 Example E(Pa) β (m/m/ T(µm) Si 10e11 2.3e-6 Al 73e9 22.5e-6 2 0.1 T=100 Neglecting poisson’s ratio =0 w=2µm l=10 m From equation (5) ( ) 2 × 10 −6 ) 106 & 2 × 10 −6 $ + '' 9 $ 2 73 × 10 % 6 ⋅ 0.1 × 10 − 6 ( ρ= = 0.005m (22.5 − 2.3)10− 6 × 100 From equation (6) −6 3 ( 2 ×10 )(2 ×10 ) F ≈ (10 ) 12 ⋅ 0.005 ⋅10 ⋅10 −6 11 −6 = 2.67 ×10 −6 N From equation (7) 2 ( −6 2 ) ! 10 × 10 z= = = 10 nm 2ρ 2 × 0.005 NTHU ESS5850 F. G. Tseng Micro System Design Fall/2016, 9-1, p12 NTHU ESS5850 F. G. Tseng Micro System Design Fall/2016, 9-1, p13 NTHU ESS5850 F. G. Tseng Micro System Design Fall/2016, 9-1, p14
© Copyright 2026 Paperzz