11T Dipole Circuits S. Yammine - H. Thiesen - L. Bortot TE-EPC-MPC – TE-MPE-PE 21/03/2016 logo area Acknowledgements TE-MSC-LMF F. Savary, H. Prin, L. Grand-Clement TE-MSC-MDT S.I. Bermudez TE-MPE-PE B. Auchmann, M. Prioli TE-MPE-EE F. Rodriguez Mateos BE-ABP-HSS M. Giovannozzi TE-MSC-MNC P. Fessia EN-ACE-INT J.P. Corso WP6, WP11 members, … Contents 01 Integration of the 11 T Dipoles in the RB Circuits 02 11 T Circuit and TRIM Power Converter 03 Electrical Protection of the 11 T Circuit 04 Summary logo area Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 2 01 Integration of the 11 T Dipoles in the RB Circuits logo area Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 3 Integration of the 11 T Dipoles Main Dipole Circuits (RB Circuits) before LS2 : 8 Main Dipole Circuits in the LHC Per Circuit (Current Configuration prior to LS2) : 154 MB Dipoles (77 Type A – 77 Type B) LTOT ≈ 15.708 H (102 mH / Magnet) RTOT ≈ 1 mΩ Rextraction = 140 mΩ (2x70 mΩ) C8 C9 C10 C11 C34 Type A Dipole C8 Type B Dipole RB.A67 102 mH Energy Extraction System 1 logo area Energy Extraction System 2 Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 4 Integration of the 11 T Dipoles Current Characteristics in the RB Circuit : Ramp-Up Current Slope = 10 A/s Ramp-Down Current Slope = -10 A/s Continuous Mode Current : 6.5 TeV : IRB_cont = 11 kA 7 TeV : IRB_cont = 11.85 kA (Nominal) 7.6 TeV : IRB_cont = 12.84 kA (Ultimate) 15000 Continuous Mode 10000 IRB(A) 5000 0 0 logo area 500 1000 1500 2000 2500 3000 3500 4000 t(s) Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 5 Integration of the 11 T Dipoles Present-Day Integration Planning : 2 Cryo-Assemblies for LS2 (*) : MBA-B8L7 and MBB-B8R7 2 Additional Cryo-Assemblies for LS3 (*) : MBA-B10L7 and MBB-B10R7 11T Magnet Collimator 11T Magnet Cryo-Assembly : 2 x 11T Magnets (2 x 5.5m) + Collimator (3 m) L11T = Inductance of the Two 11T Magnets in Series ≈ 130 mH (*) Ref logo area : F. Savary, “WP11 Road Map following Chamonix 2016”, Presentation for WP11 Technical Coordination Meetings, 10 Feb. 2016. Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 6 Integration of the 11 T Dipoles Magnets Replaced for LS3 (*) : MBA-B8L7 and MBA-B10L7 (Circuit RB.A67) MBB-B8R7 and MBB-B10R7 (Circuit RB.A78) – Transfer to A Line Circuit RB.A67 C8 C11 C10 C9 C8 Type A Dipole Type B Dipole RB.A67 132 mH 102 mH C8 C11 132 mH C10 132 mH C9 11T Dipole C8 132 mH Type A Dipole Type B Dipole RB.A78 102 mH 11T Dipole Circuit RB.A78 logo area (*) could be subject to modification Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 7 Integration of the 11 T Dipoles Modification of the Circuit Characteristics : Circuit Current Configuration LS2 LS3 Maximal Required PC Voltage RB.A67 - RB.A78 171 V 171.6 V 172.2 V Total Circuit Inductance (LTOT) RB.A67 - RB.A78 15.708 H 15.768 H 15.828 H Circuit Time Constant (τ) RB.A67 - RB.A78 4hr22min 4hr23min 4hr24min Energy Extraction Time Constant RB.A67 - RB.A78 1min52s 1min53s 1min53s RB.A67 420 V 433 V 447 V RB.A78 420 V 425 V 431 V RB.A67 - RB.A78 910 V 910 V 910 V Maximum Common Voltage in Case of FPA Maximum Common Voltage in Case of FPA + Earth Fault logo area Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 8 02 11T Circuit and TRIM Power Converter logo area Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 9 11 T Circuit and TRIM PC Requirements on the 11 T Dipole Current : Modification of RB Current in the 11 T Dipoles (*) for Readapted Magnetic Field : 12000 Continuous Mode 0 6000 6.5 TeV IRB = 11 kA ΔI11T = -67 A 4000 2000 -250 A 500 1000 1500 2000 2500 3000 8000 -100 6000 4000 2000 -250 A 3500 7 TeV (Nominal) IRB = 11.85 kA ΔI11T = 0 A 0 500 1000 1500 TRIM PC LS3 C11 C10 2000 2500 3000 3500 4000 -300 4000 -250 A 7.6 TeV (Ultimate) IRB = 12.84 kA ΔI11T = 91 A 0 0 500 1000 1500 2000 2500 3000 3500 -200 -300 4000 t(s) C9 C8 Type A Dipole Type B Dipole 132 mH -100 6000 TRIM PC LS2 RB.A67 102 mH 8000 2000 t(s) t(s) C8 -200 0 -300 4000 0 10000 -200 0 0 IRB(A) -100 ΔI11T 12000 ITRIM(A) 8000 100 0 10000 ITRIM(A) ΔI11T Continuous Mode 14000 ITRIM(A) 10000 100 Continuous Mode IRB(A) 12000 IRB(A) 14000 100 14000 132 mH 11 T Circuit : TRIM PC + 11 T Dipole 11T Dipole Current Controlled Power Converter logo area (*) Preliminary curves - should be confirmed by operation Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 10 11 T Circuit and TRIM PC Normal Operation of the TRIM PC for 7 TeV: Current Rating : [-250 A … 0 A] Voltage Rating : [min (-1.5 V, 1.5 - 250xRcable) … 1.5 V] (< +/- 5 V) 4 Quadrants (Positive Currents for 7.6 TeV) 100 Continuous Mode 12000 RCable/2 LMB I11T ITRIM ~ -1.5 V V11T 6000 L11T -100 ITRIM(A) 8000 VTRIM Ramp Up Ramp Down 0 10000 IRB(A) LMB ITRIM (A) ~ 1.5 V VTRIM (V) -200 I = -1.5/RCABLE (A) RCable/2 LMB 4000 LMB 14000 2000 -250 A 0 0 500 1000 1500 2000 t(s) logo area 2500 3000 3500 -300 4000 V = 1.5 -250*RCABLE I = -250 A Current Voltage Locus IRB VRB Electrical Equivalent Circuit Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 11 11 T Circuit and TRIM PC 𝟎 𝑰𝑹𝑩 −𝑹𝑻𝑹𝑰𝑴 𝑰𝑻𝑹𝑰𝑴 𝑳𝟏𝟏𝑻 𝟏 𝑳 + 𝑻𝑶𝑻 −𝟏 𝑳𝑻𝑶𝑻 −𝟏 𝑳𝑻𝑶𝑻 𝟏 𝑳𝟏𝟏𝑻 + 𝑽𝑹𝑩 𝟏 𝑳𝑻𝑶𝑻 𝑽𝑻𝑹𝑰𝑴 Space State Representation Magnitude (dB) 𝒅𝑰𝑹𝑩 𝒅𝒕 𝒅𝑰𝑻𝑹𝑰𝑴 𝒅𝒕 −𝑹𝑻𝑶𝑻 𝑳𝑻𝑶𝑻 = 𝑹𝑻𝑶𝑻 𝑳𝑻𝑶𝑻 -60 -80 -100 270 Phase (deg) Coupling of the TRIM – RB Circuits : IRB/VTRIM -40 180 90 0 -2 10 -1 10 0 10 1 10 2 10 3 10 Frequency (Hz) TRIM Circuit Mag nitude (dB) -40 TRIM : 1 Hz Dynamics TRIM : 10 Hz Dynamics -60 -80 315 Phas e (deg) RB Circuit ITRIM/IRB 0 -20 270 225 12 180 135 -2 10 10 -1 10 0 10 1 10 2 10 3 Frequency (Hz) Controlled System Block Diagram Representation logo area TRIM Bandwidth Frequency >> RB Bandwidth Frequency Ref : https://indico.cern.ch/event/507166/ Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 11 T Circuit and TRIM PC Resonating Frequencies due Circuit Bandwidth : I_TRIM I_TRIM_REF I_TRIM 0 0 -100 -100 -200 -200 -300 I_TRIM_REF -300 I_TRIM_REF-I_TRIM I_TRIM_REF-I_TRIM 0.04 0.02 0.02 0 0 -0.02 -0.02 -0.04 V_TRIM V_TRIM 2 2 1 1 0 0 -1 -1 V_11T TRIM FBW is limited due to resonance V_11T 2 1.5 1 0.5 0 -0.5 4 0 -4 I_RB I_RB_REF 12K 12K 8K 8K 4K I_RB I_RB_REF 0 200 4K 0K 0K 0 200 400 600 800 1000 1200 1400 400 600 Time (s) Current FBW = 10 Hz Voltage FBW = 100 Hz logo area 800 1000 1200 1400 Time (s) Current FBW = 8 Hz Voltage FBW = 30 Hz Ref : https://indico.cern.ch/event/507166/ Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 13 03 Electrical Protection of the 11 T Circuit (*) logo area (*) Ref : https://indico.cern.ch/event/507166/ Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 14 Protection of the 11 T Circuit Major Issues on TRIM Circuit : Maximum TRIM Current Limited by the Magnet-TRIM Connections V11T LMB ITRIM I11T RCrowbar Bypass Diode RCable/2 LMB LMB L11T VTRIM Baseline Electrical Protection Elements of the TRIM Circuit : Crowbar for Over-Current Protection Bypass Diode for 11 T Dipole Quench Protection Crowbar RCable/2 LMB IRB VRB logo area Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 15 Protection of the 11 T Circuit Common Failure Scenarios and Corresponding Constraints : Constraints RCable To avoid engaging the Bypass Diode : V11T I11T Fire TRIM Crowbar Circuit Stop TRIM PC Equivalent Circuit L11T TRIM PC Failure Actions RCrowbarTRIM Failure Scenario 𝑹𝒄𝒓𝒐𝒘𝒃𝒂𝒓𝑻𝑹𝑰𝑴 + 𝑹𝑪𝒂𝒃𝒍𝒆 < 𝟓 𝑽 − 𝟎, 𝟕 𝑽 = 𝟏𝟕 𝒎Ω 𝟐𝟓𝟎 𝑨 ITRIM logo area Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 16 Protection of the 11 T Circuit Common Failure Scenarios and Corresponding Constraints : Failure Scenario Actions Equivalent Circuit Constraints LMB V11T RQUENCH RCable ITRIM Total resistance limits to avoid over-current (*) : 𝑹𝒄𝒓𝒐𝒘𝒃𝒂𝒓𝑻𝑹𝑰𝑴 + 𝑹𝑪𝒂𝒃𝒍𝒆 > LMB L11T Quench at 11T Dipole LMB RExtraction/2 Fire TRIM and RB Crowbar Circuits Stop TRIM and RB PCs Engage Extraction Circuits RCrowbarTRIM RExtraction/2 𝑫𝒊𝒐𝒅𝒆 𝑭𝒐𝒓𝒘𝒂𝒓𝒅 𝑽𝒐𝒍𝒕𝒂𝒈𝒆 (≈ 𝟔𝑽) = 𝟐𝟒 𝒎Ω 𝑰𝑻𝑹𝑰𝑴𝒎𝒂𝒙 Bypass diode will be fired if this constraint is respected. If not respected (constraint on diode respected), ITRIMmax = 400 A when 11 T quench occurs RCrowbarRB logo area (*) determined by the TRIM/magnet connections Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 17 Protection of the 11 T Circuit Common Failure Scenarios and Corresponding Constraints : Failure Scenario Actions Equivalent Circuit Constraints RExtraction/2 RCrowbarTRIM IBypass ITRIM LMB I11T RQUENCH V11T L11T Quench at Random Magnet RExtraction/2 910 V LMB Engage TRIM and RB Crowbar Circuits Stop TRIM and RB PCs Engage Extraction Circuits Total resistance limits to avoid over-current (*) : LMB 910 V RCable 𝑹𝒄𝒓𝒐𝒘𝒃𝒂𝒓𝑻𝑹𝑰𝑴 + 𝑹𝑪𝒂𝒃𝒍𝒆 > 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝑽𝟏𝟏𝑻 ≈ 𝟏𝟐 𝑽 = 𝟔𝟎 𝒎Ω 𝑰𝑻𝑹𝑰𝑴𝒎𝒂𝒙 Bypass diode will be fired if this constraint is respected. If not respected (constraint on diode respected), ITRIMmax = 750 A when FPA occurs. RCrowbarRB logo area (*) determined by the TRIM/magnet connections Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 18 Protection of the 11 T Circuit Recapitulation : 𝑹𝒄𝒓𝒐𝒘𝒃𝒂𝒓𝑻𝑹𝑰𝑴 + 𝑹𝑪𝒂𝒃𝒍𝒆 > 𝟐𝟒 𝒎Ω 11 T Quench Constraint 𝑹𝒄𝒓𝒐𝒘𝒃𝒂𝒓𝑻𝑹𝑰𝑴 + 𝑹𝑪𝒂𝒃𝒍𝒆 > 𝟔𝟎 𝒎Ω If respected, bypass diode will be engaged when TRIM PC at |ITRIM| > 60 A. Heat dissipation in the diode could lead to quench ? FPA Constraint 𝑹𝒄𝒓𝒐𝒘𝒃𝒂𝒓𝑻𝑹𝑰𝑴 + 𝑹𝑪𝒂𝒃𝒍𝒆 < 𝟏𝟕 𝒎Ω If respected, over-currents in the TRIM circuit occur when FPA is launched (around 750 A). An issue for the magnet-circuit connection! Bypass Diode Constraint logo area Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 19 Protection of the 11 T Circuit Simulations of FPA with no Quench at 11 T Magnet : RTOT = 16 mΩ TrimPC Currents 11T currents IRB I11T IDiode 10000 10000 [A] 2000 6000 -100 2000 -600 0 0 0 10 20 30 40 -800 50 0 10 20 30 40 -2000 50 [s] 11T currents 5000 [A] 4000 3000 2000 100 5000 30 40 50 -100 -400 50 3000 Energy Dissipated in Diode = 1.5 kJ 10 20 30 [s] 20 40 50 -1000 0 30 40 50 250 ICrow 200 150 100 50 0 -50 0 0 10 Trim PC currents 1000 [s] 0 [s] 4000 0 -300 20 40 IRB I11T IDiode 2000 0 30 11T Currents 6000 -200 1000 20 7000 ICrow 200 [A] 6000 10 10 [s] 300 IRB I11T IDiode 0 -150 0 TrimPC currents 7000 [A] -50 4000 [s] logo area 0 [A] [A] [A] -400 4000 ICrow 8000 -200 6000 50 IRB I11T IDiode 12000 0 8000 -1000 TrimPC currents 14000 ICrow [A] 12000 -2000 FPA at Minimum TRIM Current : IRB = 6 KA ITRIM = -250 A 11T currents 200 14000 FPA at Maximum RB Current : IRB = 11.85 KA ITRIM = 0 A RTOT = 100 mΩ 10 20 30 [s] 40 50 -100 0 10 20 30 40 50 [s] Courtesy of L. Bortot Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 20 Protection of the 11 T Circuit Simulations of FPA with Quench at 11 T Magnet : RTOT = 16 mΩ RTOT = 100 mΩ 300 10000 [A] [A] 6000 100 10 20 30 40 -100 50 0 10 20 30 40 -2000 50 0 10 20 [A] [A] 10 20 30 40 50 0 10 [s] logo area 3000 100 50 0 0 0 ICrow 1000 0 -1000 50 150 2000 0 -100 40 200 4000 100 30 TrimPC currents 5000 2000 1000 20 250 IRB I11T IDiode 6000 200 3000 10 [s] 7000 ICrow 300 4000 -10 0 50 [A] 5000 [A] FPA at Minimum TRIM Current : IRB = 6 KA ITRIM = -250 A IRB I11T IDiode 6000 40 11T currents TrimPC currents 400 11T currents 7000 30 [s] [s] [s] 20 0 0 0 30 10 2000 0 0 -2000 40 4000 4000 2000 6000 ICrow 50 8000 200 8000 60 IRB I11T IDiode [A] 10000 [A] FPA at Maximum RB Current : IRB = 11.85 KA ITRIM = 0 A 14000 ICrow 12000 IRB I11T IDiode 12000 TrimPC currents 11T currents TrimPC currents 400 11T currents 14000 20 30 [s] 40 50 -1000 0 10 20 30 [s] 40 50 -50 0 10 20 30 40 50 [s] Courtesy of L. Bortot Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 21 Protection of the 11 T Circuit Recapitulation of the Simulations : 11 T No Quench RTOT = 16 mΩ RTOT = 100 mΩ TRIM Circuit Current = 700 A TRIM Circuit Current = 120 A TRIM Circuit Current = 320 A TRIM Circuit Current = 60 A Diode carries ITRIM decay (1.5 kJ dissipated in diode – to be discussed) RTOT = 16 mΩ RTOT = 100 mΩ FPA @ IRB = 11.85 KA ITRIM = 0 A TRIM Circuit Current = 340 A TRIM Circuit Current = 50 A FPA @ IRB = 6 KA ITRIM = -250 A TRIM Circuit Current = 340 A TRIM Circuit Current = 50 A FPA @ IRB = 11.85 KA ITRIM = 0 A FPA @ IRB = 6 KA ITRIM = -250 A 11 T Quench logo area Courtesy of L. Bortot Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 22 Protection of the 11 T Circuit Integration and Cable Resistance : A9 option LCable (m) Rcable (mΩ) MB.B8L7 440 ≈13 MB.B8R7 360 ≈11 A20 option LCable (m) Rcable (mΩ) MB.B8L7 550 ≈16 3x400mm2 (*) Cables/Phase 6x400mm2 Cables/PC 12 Cables for LS2 24 Cables for LS3 23 MB.B8R7 470 ≈14 A9 A20 logo area Courtesy of P. Fessia – JP. Corso (*) Suggestion on the cable section – not definite Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 04 Summary logo area Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 24 Summary To decouple the RB and TRIM dynamics, TRIM FBW should be high. TRIM FBW is limited due to resonating frequencies. TRIM PC is a 4 quadrants PC. Common mode voltage of the TRIM circuit could reach around 1000 V. TRIM voltage is limited to have minimal impact in case of instability (+/-5 V). Protection and integration imposes constraints on cable and crowbar resistances. Test plan is studied (SM18) for constraint definition (which constraints to keep). Functional Specifications of the TRIM Power Converter is being defined in line with circuit and quench protection, magnet requirements, … logo area Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 25 Thank you for your attention References (for circuit simulations and constraints explication) S. Yammine and H. Thiesen, “ 11T Magnets Powering – TRIM PC Constraints”, in the Biweekly Meeting on the 11T TRIM Powering and Protection, 02 March 2016. (https://indico.cern.ch/event/507166/) L. Bortot , “Impact of Quench-Induced Fast Power Aborts on the RB Hi-Lumi Circuit”, in the Biweekly Meeting on the 11T TRIM Powering and Protection, 02 March 2016. (https://indico.cern.ch/event/507166/) logo area Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 26 Additional Slides Reference design (RTOT = 16 mΩ) No Quench: Not suitable FPA @ 11.85kA 0A/s, crowbar current 700 A Quench + QH: Suitable Quench + CLIQ: Not suitable crowbar current 500 A Variant 01 design (RTOT = 0.1 Ω) No Quench: Suitable (!) Effects of MIITS in the bypass diode to be discussed Quench + QH: Suitable Quench + CLIQ: Not suitable crowbar current 500 A Variant 02 design (RTOT = 0.1 Ω + reverse bypass diode 20 V) No Quench: Suitable (!) Effects of MIITS in the bypass diode to be discussed Quench + QH: Suitable Quench + CLIQ: Suitable 0.1 Ω 0.1 Ω 20 V logo area Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016 27
© Copyright 2026 Paperzz