2016-03-21_11TDipoleCircuits_SamerYammine

11T Dipole Circuits
S. Yammine - H. Thiesen - L. Bortot
TE-EPC-MPC – TE-MPE-PE
21/03/2016
logo
area
Acknowledgements
 TE-MSC-LMF
F. Savary, H. Prin, L. Grand-Clement
 TE-MSC-MDT
S.I. Bermudez
 TE-MPE-PE
B. Auchmann, M. Prioli
 TE-MPE-EE
F. Rodriguez Mateos
 BE-ABP-HSS
M. Giovannozzi
 TE-MSC-MNC
P. Fessia
 EN-ACE-INT
J.P. Corso
 WP6, WP11 members, …
Contents
01 Integration of the 11 T Dipoles in the RB Circuits
02 11 T Circuit and TRIM Power Converter
03 Electrical Protection of the 11 T Circuit
04 Summary
logo
area
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
2
01
Integration of the 11 T Dipoles
in the RB Circuits
logo
area
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
3
Integration of the 11 T Dipoles
Main Dipole Circuits (RB Circuits) before LS2 :
 8 Main Dipole Circuits in the LHC
Per Circuit (Current Configuration prior to LS2) :
 154 MB Dipoles (77 Type A – 77 Type B)
 LTOT ≈ 15.708 H (102 mH / Magnet)
 RTOT ≈ 1 mΩ
 Rextraction = 140 mΩ (2x70 mΩ)
C8
C9
C10
C11
C34
Type A Dipole
C8
Type B Dipole
RB.A67
102 mH
Energy Extraction System 1
logo
area
Energy Extraction System 2
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
4
Integration of the 11 T Dipoles
Current Characteristics in the RB Circuit :
 Ramp-Up Current Slope = 10 A/s
 Ramp-Down Current Slope = -10 A/s
 Continuous Mode Current :
6.5 TeV : IRB_cont = 11 kA
7 TeV : IRB_cont = 11.85 kA (Nominal)
7.6 TeV : IRB_cont = 12.84 kA (Ultimate)
15000
Continuous Mode
10000
IRB(A)



5000
0
0
logo
area
500
1000
1500
2000
2500
3000
3500
4000
t(s)
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
5
Integration of the 11 T Dipoles
Present-Day Integration Planning :
 2 Cryo-Assemblies for LS2 (*) : MBA-B8L7 and MBB-B8R7
 2 Additional Cryo-Assemblies for LS3 (*) : MBA-B10L7 and MBB-B10R7
11T Magnet
Collimator
11T Magnet
Cryo-Assembly : 2 x 11T Magnets (2 x 5.5m) + Collimator (3 m)
L11T = Inductance of the Two 11T Magnets in Series ≈ 130 mH
(*) Ref
logo
area
: F. Savary, “WP11 Road Map following Chamonix 2016”, Presentation for WP11 Technical Coordination Meetings, 10 Feb. 2016.
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
6
Integration of the 11 T Dipoles
Magnets Replaced for LS3 (*) :
 MBA-B8L7 and MBA-B10L7 (Circuit RB.A67)
 MBB-B8R7 and MBB-B10R7 (Circuit RB.A78) – Transfer to A Line
Circuit RB.A67
C8
C11
C10
C9
C8
Type A Dipole
Type B Dipole
RB.A67
132 mH
102 mH
C8
C11
132 mH
C10
132 mH
C9
11T Dipole
C8
132 mH
Type A Dipole
Type B Dipole
RB.A78
102 mH
11T Dipole
Circuit RB.A78
logo
area
(*) could be subject to modification
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
7
Integration of the 11 T Dipoles
Modification of the Circuit Characteristics :
Circuit
Current
Configuration
LS2
LS3
Maximal Required PC Voltage
RB.A67 - RB.A78
171 V
171.6 V
172.2 V
Total Circuit Inductance (LTOT)
RB.A67 - RB.A78
15.708 H
15.768 H
15.828 H
Circuit Time Constant (τ)
RB.A67 - RB.A78
4hr22min
4hr23min
4hr24min
Energy Extraction Time Constant
RB.A67 - RB.A78
1min52s
1min53s
1min53s
RB.A67
420 V
433 V
447 V
RB.A78
420 V
425 V
431 V
RB.A67 - RB.A78
910 V
910 V
910 V
Maximum Common Voltage in
Case of FPA
Maximum Common Voltage in
Case of FPA + Earth Fault
logo
area
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
8
02
11T Circuit and TRIM Power
Converter
logo
area
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
9
11 T Circuit and TRIM PC
Requirements on the 11 T Dipole Current :
 Modification of RB Current in the 11 T Dipoles (*) for Readapted Magnetic Field :
12000
Continuous Mode
0
6000
6.5 TeV
IRB = 11 kA
ΔI11T = -67 A
4000
2000
-250 A
500
1000
1500
2000
2500
3000
8000
-100
6000
4000
2000
-250 A
3500
7 TeV (Nominal)
IRB = 11.85 kA
ΔI11T = 0 A
0
500
1000
1500
TRIM PC LS3
C11
C10
2000
2500
3000
3500
4000
-300
4000
-250 A
7.6 TeV (Ultimate)
IRB = 12.84 kA
ΔI11T = 91 A
0
0
500
1000
1500
2000
2500
3000
3500
-200
-300
4000
t(s)
C9
C8
Type A Dipole
Type B Dipole
132 mH
-100
6000
TRIM PC LS2
RB.A67
102 mH
8000
2000
t(s)
t(s)
C8
-200
0
-300
4000
0
10000
-200
0
0
IRB(A)
-100
ΔI11T
12000
ITRIM(A)
8000
100
0
10000
ITRIM(A)
ΔI11T
Continuous Mode
14000
ITRIM(A)
10000
100
Continuous Mode
IRB(A)
12000
IRB(A)
14000
100
14000
132 mH
11 T Circuit : TRIM PC + 11 T Dipole
11T Dipole
Current Controlled Power Converter
logo
area
(*) Preliminary curves - should be confirmed by operation
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
10
11 T Circuit and TRIM PC
Normal Operation of the TRIM PC for 7 TeV:
 Current Rating : [-250 A … 0 A]
 Voltage Rating : [min (-1.5 V, 1.5 - 250xRcable) … 1.5 V] (< +/- 5 V)
 4 Quadrants (Positive Currents for 7.6 TeV)
100
Continuous Mode
12000
RCable/2
LMB
I11T
ITRIM
~ -1.5 V
V11T
6000
L11T
-100
ITRIM(A)
8000
VTRIM
Ramp Up
Ramp Down
0
10000
IRB(A)
LMB
ITRIM (A)
~ 1.5 V
VTRIM (V)
-200
I = -1.5/RCABLE (A)
RCable/2
LMB
4000
LMB
14000
2000
-250 A
0
0
500
1000
1500
2000
t(s)
logo
area
2500
3000
3500
-300
4000
V = 1.5 -250*RCABLE
I = -250 A
Current Voltage
Locus
IRB
VRB
Electrical Equivalent
Circuit
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
11
11 T Circuit and TRIM PC
𝟎
𝑰𝑹𝑩
−𝑹𝑻𝑹𝑰𝑴
𝑰𝑻𝑹𝑰𝑴
𝑳𝟏𝟏𝑻
𝟏
𝑳
+ 𝑻𝑶𝑻
−𝟏
𝑳𝑻𝑶𝑻
−𝟏
𝑳𝑻𝑶𝑻
𝟏
𝑳𝟏𝟏𝑻
+
𝑽𝑹𝑩
𝟏
𝑳𝑻𝑶𝑻 𝑽𝑻𝑹𝑰𝑴
Space State Representation
Magnitude (dB)
𝒅𝑰𝑹𝑩
𝒅𝒕
𝒅𝑰𝑻𝑹𝑰𝑴
𝒅𝒕
−𝑹𝑻𝑶𝑻
𝑳𝑻𝑶𝑻
=
𝑹𝑻𝑶𝑻
𝑳𝑻𝑶𝑻
-60
-80
-100
270
Phase (deg)
Coupling of the TRIM – RB Circuits :
IRB/VTRIM
-40
180
90
0
-2
10
-1
10
0
10
1
10
2
10
3
10
Frequency (Hz)
TRIM Circuit
Mag nitude (dB)
-40
TRIM : 1 Hz Dynamics
TRIM : 10 Hz Dynamics
-60
-80
315
Phas e (deg)
RB Circuit
ITRIM/IRB
0
-20
270
225
12
180
135
-2
10
10
-1
10
0
10
1
10
2
10
3
Frequency (Hz)
Controlled System Block Diagram Representation
logo
area
TRIM Bandwidth Frequency
>> RB Bandwidth Frequency
Ref : https://indico.cern.ch/event/507166/
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
11 T Circuit and TRIM PC
Resonating Frequencies due Circuit Bandwidth :
I_TRIM
I_TRIM_REF
I_TRIM
0
0
-100
-100
-200
-200
-300
I_TRIM_REF
-300
I_TRIM_REF-I_TRIM
I_TRIM_REF-I_TRIM
0.04
0.02
0.02
0
0
-0.02
-0.02
-0.04
V_TRIM
V_TRIM
2
2
1
1
0
0
-1
-1
V_11T
TRIM FBW is limited
due to resonance
V_11T
2
1.5
1
0.5
0
-0.5
4
0
-4
I_RB
I_RB_REF
12K
12K
8K
8K
4K
I_RB
I_RB_REF
0
200
4K
0K
0K
0
200
400
600
800
1000
1200
1400
400
600
Time (s)
Current FBW = 10 Hz
Voltage FBW = 100 Hz
logo
area
800
1000
1200
1400
Time (s)
Current FBW = 8 Hz
Voltage FBW = 30 Hz
Ref : https://indico.cern.ch/event/507166/
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
13
03
Electrical Protection of the 11 T
Circuit (*)
logo
area
(*) Ref : https://indico.cern.ch/event/507166/
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
14
Protection of the 11 T Circuit
Major Issues on TRIM Circuit :
 Maximum TRIM Current Limited by the Magnet-TRIM Connections
V11T
LMB
ITRIM
I11T
RCrowbar
Bypass Diode
RCable/2
LMB
LMB
L11T
VTRIM
Baseline Electrical Protection Elements of the TRIM Circuit :
 Crowbar for Over-Current Protection
 Bypass Diode for 11 T Dipole Quench Protection
Crowbar RCable/2
LMB
IRB
VRB
logo
area
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
15
Protection of the 11 T Circuit
Common Failure Scenarios and Corresponding Constraints :
Constraints
RCable
 To avoid engaging the Bypass Diode :
V11T
I11T
 Fire TRIM Crowbar
Circuit
 Stop TRIM PC
Equivalent Circuit
L11T
TRIM PC
Failure
Actions
RCrowbarTRIM
Failure
Scenario
𝑹𝒄𝒓𝒐𝒘𝒃𝒂𝒓𝑻𝑹𝑰𝑴 + 𝑹𝑪𝒂𝒃𝒍𝒆 <
𝟓 𝑽 − 𝟎, 𝟕 𝑽
= 𝟏𝟕 𝒎Ω
𝟐𝟓𝟎 𝑨
ITRIM
logo
area
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
16
Protection of the 11 T Circuit
Common Failure Scenarios and Corresponding Constraints :
Failure
Scenario
Actions
Equivalent Circuit
Constraints
LMB
V11T
RQUENCH
RCable
ITRIM
 Total resistance limits to avoid over-current (*) :
𝑹𝒄𝒓𝒐𝒘𝒃𝒂𝒓𝑻𝑹𝑰𝑴 + 𝑹𝑪𝒂𝒃𝒍𝒆 >
LMB
L11T
Quench at
11T Dipole
LMB
RExtraction/2
 Fire TRIM and RB
Crowbar Circuits
 Stop TRIM and RB PCs
 Engage Extraction
Circuits
RCrowbarTRIM
RExtraction/2
𝑫𝒊𝒐𝒅𝒆 𝑭𝒐𝒓𝒘𝒂𝒓𝒅 𝑽𝒐𝒍𝒕𝒂𝒈𝒆 (≈ 𝟔𝑽)
= 𝟐𝟒 𝒎Ω
𝑰𝑻𝑹𝑰𝑴𝒎𝒂𝒙
 Bypass diode will be fired if this constraint is
respected.
 If not respected (constraint on diode respected),
ITRIMmax = 400 A when 11 T quench occurs
RCrowbarRB
logo
area
(*) determined by the TRIM/magnet connections
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
17
Protection of the 11 T Circuit
Common Failure Scenarios and Corresponding Constraints :
Failure
Scenario
Actions
Equivalent Circuit
Constraints
RExtraction/2
RCrowbarTRIM
IBypass
ITRIM
LMB
I11T
RQUENCH
V11T
L11T
Quench at
Random
Magnet
RExtraction/2
910 V
LMB
 Engage TRIM and RB
Crowbar Circuits
 Stop TRIM and RB PCs
 Engage Extraction
Circuits
 Total resistance limits to avoid over-current (*) :
LMB
910 V
RCable
𝑹𝒄𝒓𝒐𝒘𝒃𝒂𝒓𝑻𝑹𝑰𝑴 + 𝑹𝑪𝒂𝒃𝒍𝒆 >
𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝑽𝟏𝟏𝑻 ≈ 𝟏𝟐 𝑽
= 𝟔𝟎 𝒎Ω
𝑰𝑻𝑹𝑰𝑴𝒎𝒂𝒙
 Bypass diode will be fired if this constraint is
respected.
 If not respected (constraint on diode respected),
ITRIMmax = 750 A when FPA occurs.
RCrowbarRB
logo
area
(*) determined by the TRIM/magnet connections
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
18
Protection of the 11 T Circuit
Recapitulation :
𝑹𝒄𝒓𝒐𝒘𝒃𝒂𝒓𝑻𝑹𝑰𝑴 + 𝑹𝑪𝒂𝒃𝒍𝒆 > 𝟐𝟒 𝒎Ω
11 T Quench Constraint
𝑹𝒄𝒓𝒐𝒘𝒃𝒂𝒓𝑻𝑹𝑰𝑴 + 𝑹𝑪𝒂𝒃𝒍𝒆 > 𝟔𝟎 𝒎Ω
 If respected, bypass diode will be engaged when TRIM PC at
|ITRIM| > 60 A.
 Heat dissipation in the diode could lead to quench ?
FPA Constraint
𝑹𝒄𝒓𝒐𝒘𝒃𝒂𝒓𝑻𝑹𝑰𝑴 + 𝑹𝑪𝒂𝒃𝒍𝒆 < 𝟏𝟕 𝒎Ω
 If respected, over-currents in the TRIM circuit occur when FPA is
launched (around 750 A).
 An issue for the magnet-circuit connection!
Bypass Diode Constraint
logo
area
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
19
Protection of the 11 T Circuit
Simulations of FPA with no Quench at 11 T Magnet :
RTOT = 16 mΩ
TrimPC Currents
11T currents
IRB
I11T
IDiode
10000
10000
[A]
2000
6000
-100
2000
-600
0
0
0
10
20
30
40
-800
50
0
10
20
30
40
-2000
50
[s]
11T currents
5000
[A]
4000
3000
2000
100
5000
30
40
50
-100
-400
50
3000
Energy Dissipated in
Diode = 1.5 kJ
10
20
30
[s]
20
40
50
-1000
0
30
40
50
250
ICrow
200
150
100
50
0
-50
0
0
10
Trim PC currents
1000
[s]
0
[s]
4000
0
-300
20
40
IRB
I11T
IDiode
2000
0
30
11T Currents
6000
-200
1000
20
7000
ICrow
200
[A]
6000
10
10
[s]
300
IRB
I11T
IDiode
0
-150
0
TrimPC currents
7000
[A]
-50
4000
[s]
logo
area
0
[A]
[A]
[A]
-400
4000
ICrow
8000
-200
6000
50
IRB
I11T
IDiode
12000
0
8000
-1000
TrimPC currents
14000
ICrow
[A]
12000
-2000
FPA at Minimum
TRIM Current :
IRB = 6 KA
ITRIM = -250 A
11T currents
200
14000
FPA at Maximum
RB Current :
IRB = 11.85 KA
ITRIM = 0 A
RTOT = 100 mΩ
10
20
30
[s]
40
50
-100
0
10
20
30
40
50
[s]
Courtesy of L. Bortot
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
20
Protection of the 11 T Circuit
Simulations of FPA with Quench at 11 T Magnet :
RTOT = 16 mΩ
RTOT = 100 mΩ
300
10000
[A]
[A]
6000
100
10
20
30
40
-100
50
0
10
20
30
40
-2000
50
0
10
20
[A]
[A]
10
20
30
40
50
0
10
[s]
logo
area
3000
100
50
0
0
0
ICrow
1000
0
-1000
50
150
2000
0
-100
40
200
4000
100
30
TrimPC currents
5000
2000
1000
20
250
IRB
I11T
IDiode
6000
200
3000
10
[s]
7000
ICrow
300
4000
-10
0
50
[A]
5000
[A]
FPA at Minimum
TRIM Current :
IRB = 6 KA
ITRIM = -250 A
IRB
I11T
IDiode
6000
40
11T currents
TrimPC currents
400
11T currents
7000
30
[s]
[s]
[s]
20
0
0
0
30
10
2000
0
0
-2000
40
4000
4000
2000
6000
ICrow
50
8000
200
8000
60
IRB
I11T
IDiode
[A]
10000
[A]
FPA at Maximum
RB Current :
IRB = 11.85 KA
ITRIM = 0 A
14000
ICrow
12000
IRB
I11T
IDiode
12000
TrimPC currents
11T currents
TrimPC currents
400
11T currents
14000
20
30
[s]
40
50
-1000
0
10
20
30
[s]
40
50
-50
0
10
20
30
40
50
[s]
Courtesy of L. Bortot
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
21
Protection of the 11 T Circuit
Recapitulation of the Simulations :
11 T No Quench
RTOT = 16 mΩ
RTOT = 100 mΩ
TRIM Circuit Current = 700 A
TRIM Circuit Current = 120 A
TRIM Circuit Current = 320 A
TRIM Circuit Current = 60 A
Diode carries ITRIM decay (1.5 kJ dissipated in
diode – to be discussed)
RTOT = 16 mΩ
RTOT = 100 mΩ
FPA @ IRB = 11.85 KA
ITRIM = 0 A
TRIM Circuit Current = 340 A
TRIM Circuit Current = 50 A
FPA @ IRB = 6 KA
ITRIM = -250 A
TRIM Circuit Current = 340 A
TRIM Circuit Current = 50 A
FPA @ IRB = 11.85 KA
ITRIM = 0 A
FPA @ IRB = 6 KA
ITRIM = -250 A
11 T Quench
logo
area
Courtesy of L. Bortot
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
22
Protection of the 11 T Circuit
Integration and Cable Resistance :
A9 option
LCable (m)
Rcable (mΩ)
MB.B8L7
440
≈13
MB.B8R7
360
≈11
A20 option
LCable (m)
Rcable (mΩ)
MB.B8L7
550
≈16
3x400mm2 (*) Cables/Phase
6x400mm2 Cables/PC
12 Cables for LS2
24 Cables for LS3
23
MB.B8R7
470
≈14
A9
A20
logo
area
Courtesy of P. Fessia – JP. Corso
(*) Suggestion
on the cable section – not definite
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
04
Summary
logo
area
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
24
Summary








To decouple the RB and TRIM dynamics, TRIM FBW should be high.
TRIM FBW is limited due to resonating frequencies.
TRIM PC is a 4 quadrants PC.
Common mode voltage of the TRIM circuit could reach around 1000 V.
TRIM voltage is limited to have minimal impact in case of instability (+/-5 V).
Protection and integration imposes constraints on cable and crowbar resistances.
Test plan is studied (SM18) for constraint definition (which constraints to keep).
Functional Specifications of the TRIM Power Converter is being defined in line
with circuit and quench protection, magnet requirements, …
logo
area
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
25
Thank you for your attention
References (for circuit simulations and constraints explication)
S. Yammine and H. Thiesen, “ 11T Magnets Powering – TRIM PC Constraints”, in the Biweekly Meeting on
the 11T TRIM Powering and Protection, 02 March 2016. (https://indico.cern.ch/event/507166/)
L. Bortot , “Impact of Quench-Induced Fast Power Aborts on the RB Hi-Lumi Circuit”, in the Biweekly
Meeting on the 11T TRIM Powering and Protection, 02 March 2016. (https://indico.cern.ch/event/507166/)
logo
area
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
26
Additional Slides



Reference design (RTOT = 16 mΩ)
 No Quench:
Not suitable FPA @ 11.85kA 0A/s, crowbar current 700 A
 Quench + QH: Suitable
 Quench + CLIQ: Not suitable crowbar current 500 A
Variant 01 design (RTOT = 0.1 Ω)
 No Quench:
Suitable (!) Effects of MIITS in the bypass diode to be discussed
 Quench + QH: Suitable
 Quench + CLIQ: Not suitable crowbar current 500 A
Variant 02 design (RTOT = 0.1 Ω + reverse bypass diode 20 V)
 No Quench:
Suitable (!) Effects of MIITS in the bypass diode to be discussed
 Quench + QH: Suitable
 Quench + CLIQ: Suitable
0.1 Ω
0.1 Ω
20 V
logo
area
Conceptual Design Review of the Magnet Circuits for the HL-LHC - 11 T Dipole Circuits - 21/03/2016
27