Puzzle

Sudoku Puzzle – Precalculus Topics
Name:______________________________Per_____
Adapted from a puzzle by David Pleacher
Solve the 35 multiple-choice problems below.
The choices are integers from 1 to 9 inclusive.
Place the answer in the corresponding cell (labeled A, B, C, … Y, Z, a, b,…h, i).
Then solve the resulting SUDOKU puzzle.
The rules of Sudoku are simple.
Enter digits from 1 to 9 into the blank spaces.
Every row must contain one of each digit.
So must every column, and so must every 3x3 square.
Each Sudoku has a unique solution that can be reached logically without guessing.
3
4
_______A. If cos πœƒ = βˆ’ 5 and tan πœƒ = βˆ’ 3 then sin πœƒ =
3
3
(1)4
4
(2) βˆ’ 4
4
(3) 5
(4) βˆ’ 5
_______B. Which of the following is correct?
(1) π‘‘π‘Žπ‘›2 π‘₯ = 𝑠𝑒𝑐 2 π‘₯ + 1
(2) 𝑠𝑖𝑛2 π‘₯ = π‘π‘œπ‘  2 π‘₯ βˆ’ 1
(3)π‘‘π‘Žπ‘›2 π‘₯ = 𝑐𝑠𝑐 2 π‘₯ + 1
(4) π‘‘π‘Žπ‘›2 π‘₯ = 𝑠𝑒𝑐 2 π‘₯ βˆ’ 1
_______C. The inverse function of 𝑦 = 3π‘₯ + 12
(1) 𝑦 =
π‘₯βˆ’12
(2) 𝑦 =
3
(3)𝑦 = 3π‘₯ βˆ’ 12
π‘₯+12
3
(4) 𝑦 = βˆ’3π‘₯ βˆ’ 12
_______D. The inverse secant of βˆ’2 is
(6)βˆ’60°
(7) 30°
(8) 60°
(9) 120°
_______E. Use the graph to solve the inequality 𝑓(π‘₯) ≀ 0. Write the answer in interval
notation.
(5) π‘₯ ∈ (βˆ’βˆž, βˆ’3) βˆͺ (1, 5)
(6) π‘₯ ∈ (βˆ’3, 1) βˆͺ (5, ∞)
(7) π‘₯ ∈ [βˆ’3, 1] βˆͺ [5, ∞)
(8) π‘₯ ∈ (βˆ’βˆž, βˆ’3] βˆͺ [1, 5]
_______F. Choose the correct right-hand side to make the equation an identity.
1 βˆ’ sin π‘₯
=
1 + sin π‘₯
(4) (sec π‘₯ βˆ’ cot π‘₯)2
(5) (sec π‘₯ βˆ’ tan π‘₯)2
(6) (sec π‘₯ + cot π‘₯)2
(7) (sec π‘₯ + tan π‘₯)2
_______G. Which of the following statements is true?
𝐴
(1) π‘™π‘œπ‘” (𝐡) = π‘™π‘œπ‘”(𝐴) βˆ’ π‘™π‘œπ‘”(𝐡)
𝐴
log 𝐴
(2) π‘™π‘œπ‘” (𝐡) = log 𝐡
(3) log(𝐴 βˆ’ 𝐡) = log(𝐴) βˆ’ log(𝐡)
𝐴
(4) log(𝐴 βˆ’ 𝐡) = log (𝐡)
_______H. Simplify the expression without using a calculator.
4πœ‹
π‘ π‘–π‘›βˆ’1 [cos ( )]
3
(4)
5πœ‹
3
πœ‹
(5) βˆ’ 3
(6)
2πœ‹
3
πœ‹
(7) βˆ’ 6
_______I. The range of 𝑦 = π‘ π‘–π‘›βˆ’1 π‘₯ is
πœ‹ πœ‹
(4) [0, πœ‹]
(5) [βˆ’ 4 , 4 ]
πœ‹ πœ‹
πœ‹ 5πœ‹
(6) [βˆ’ 2 , 2 ]
(7) [2,
4
]
_______J. Which of the following is a graph of 𝑦 = 2π‘₯+2
(6)
(7)
(8)
(9)
_______K. If 𝑓(π‘₯) = 3π‘₯ + 1 and 𝑔(π‘₯) = √π‘₯, determine 𝑔(𝑓(5))
(1) 3√5 + 1
(2) 4
(3) 16
(4) √5
_______L. If the graph of 𝑦 = 2βˆ’π‘₯ βˆ’ 1 is reflected in the x-axis, then an equation of the
reflection is
(1) 𝑦 = 2π‘₯ βˆ’ 1
(4) 𝑦 = π‘™π‘œπ‘”2 (π‘₯ + 1)
(2) 𝑦 = βˆ’2π‘₯ + 1
(3) 𝑦 = βˆ’2βˆ’π‘₯ + 1
(5) 𝑦 = π‘™π‘œπ‘”2 (1 βˆ’ π‘₯)
_______M. What is the domain of the function in interval notation. 𝑓(π‘₯) =
(3) [βˆ’2, 2]
(4) (βˆ’βˆž, 3) βˆͺ (3, ∞)
(6) (βˆ’βˆž, βˆ’2] βˆͺ [2, 3) βˆͺ (3, ∞)
√π‘₯ 2 βˆ’4
π‘₯βˆ’3
(5) (βˆ’βˆž, 2] βˆͺ [2, ∞)
(7) [2, 3) βˆͺ (3, ∞)
1
_______N. Find the value of cos πœƒ, given 𝑃 (βˆ’ 6 , βˆ’
with πœƒ in standard position.
1
(5) βˆ’ 3
(6) βˆ’3
(7) βˆ’
√2
) is
3
on the terminal side of angle πœƒ,
2√2
3
3
(8) βˆ’ 2√2
_______O. Determine the solution of log 5 π‘₯ + log 5 (π‘₯ + 4) = 1
(1) π‘₯ = 1 and π‘₯ = βˆ’5
(2) π‘₯ = βˆ’2 ± √3
(3) π‘₯ = 1 and π‘₯ = βˆ’5 is extraneous
(4) π‘₯ = βˆ’5
_______P. Determine the constant π‘˜ if π‘₯ βˆ’ 3 is a linear factor of 3π‘₯ 3 βˆ’ 9π‘₯ 2 + π‘˜π‘₯ βˆ’ 12
(1) π‘˜ = 3
(2) π‘˜ = 4
(3) π‘˜ = 5
(4) π‘˜ = 6
_______Q. Find the equation of all lines parallel to 5π‘₯ βˆ’ 3𝑦 + 4 = 0
(6) 5π‘₯ + 3𝑦 + π‘˜ = 0
(7) 3π‘₯ βˆ’ 5𝑦 + π‘˜ = 0
(8) 5π‘₯ βˆ’ 3𝑦 + π‘˜ = 0
(9) 3π‘₯ + 5𝑦 + π‘˜ = 0
_______R. Determine the domain of 𝑔(π‘₯) = log √16 βˆ’ π‘₯ 2
(1) π‘₯ ∈ [βˆ’4, 4]
(2) π‘₯ ∈ (βˆ’βˆž, βˆ’4) βˆͺ ( 4, ∞)
(3) π‘₯ ∈ (βˆ’βˆž, +∞)
(4) π‘₯ ∈ (βˆ’4, 4)
______S. Determine the solution of log(βˆ’π‘₯ βˆ’ 1) = log(5π‘₯) + log(π‘₯)
(6) π‘₯ =
1±2√5
(7) π‘₯ =
10
_______T. If 𝑓(π‘₯) =
π‘₯
π‘₯βˆ’1
π‘₯
βˆ’π‘₯
(6) 1βˆ’π‘₯
(7) 1βˆ’π‘₯
1±βˆš21
10
1
(8) π‘₯ = 5 and π‘₯ = βˆ’1
(9) No solution
and 𝑔(π‘₯) = 1 βˆ’ π‘₯ then 𝑓(𝑔(π‘₯)) =
1
(8) π‘₯
(9)
π‘₯βˆ’1
π‘₯
_______U. Determine the solution of log 3 ( π‘₯ βˆ’ 4) + log 3 ( 7) = 2
(1) π‘₯ =
37
7
(2) π‘₯ =
βˆ’19
7
(3) π‘₯ = 67
(4) π‘₯ =
13
7
√2
_______V. Simplify the expression without using a calculator: csc[sinβˆ’1 ( 2 )]
(1) βˆ’
√2
2
(2) βˆ’
1
√3
2
(3) 2
(4)
√2
2
(5) √2
_______W. The inverse function for 𝑦 = 2π‘₯ βˆ’ 5 is
1
(3) 𝑦 = βˆ’2π‘₯ + 5
(5) 𝑦 =
(4)𝑦 = 2π‘₯βˆ’5
π‘₯+5
(6)𝑦 =
2
π‘₯βˆ’5
2
_______X. Complete the square of the following to write in standard form. What is the
length of the major axis? 4π‘₯ 2 + 9𝑦 2 βˆ’ 16π‘₯ + 18𝑦 βˆ’ 11 = 0
(1) 10
(2) 2
(3) 4
(4) 6
_______Y. Solve the triangle. Find sides to the nearest tenth.
π‘Ž = 16π‘š, 𝐴 = 37° , 𝐡 = 44°
(1) 𝐢 = 99° , 𝑏 β‰ˆ 17.8π‘š, 𝑐 β‰ˆ 25.7π‘š
(2) 𝐢 = 99° , 𝑏 β‰ˆ 18.3π‘š, 𝑐 β‰ˆ 26.7π‘š
(3) 𝐢 = 99° , 𝑏 β‰ˆ 18.5π‘š, 𝑐 β‰ˆ 26.3π‘š
(4)𝐢 = 99° , 𝑏 β‰ˆ 19.0π‘š, 𝑐 β‰ˆ 26.1π‘š
_______Z. Which of the following equations has a graph that is symmetric with respect to
the origin?
(5) 𝑦 =
π‘₯βˆ’1
(6) 𝑦 = 2π‘₯ 4 + 1
π‘₯
π‘₯
(8) 𝑦 = π‘₯ 3 +1
(7) 𝑦 = π‘₯ 3 + 2
(9) 𝑦 = π‘₯ 3 + 2
_______a. A pilot wishes to fly from Pleasant Hills to Sheldon. She calculates the distances
shown using a map, with York for reference since it is due east from Pleasant Hills. What is
the measure of angle P?
S
Sheldon
852 miles
105 miles
Y
Pleasant Hills
York
P
784 miles
(1) 4.7°
(2) 5.6°
(3) 6.8°
(4) 7.5°
_______b. Which of the following equations has a graph that is symmetric with respect to
the y-axis?
(5) 𝑦 =
π‘₯βˆ’1
(6) 𝑦 = π‘₯ 3 + 2π‘₯
π‘₯
(7) 𝑦 = 2π‘₯ 4 + 1
π‘₯
(8) 𝑦 = π‘₯ 3 + 2
(9) 𝑦 = π‘₯ 3 +1
________c. Solve using an appropriate method. ln(π‘₯ + 3) + ln 10 = 2
(4) π‘₯ = 𝑒 2 βˆ’ 13
(5) π‘₯ = ln 2 βˆ’ 13
(6) π‘₯ =
𝑒 2 βˆ’30
10
(7) π‘₯ =
ln 2βˆ’30
10
_______d. Solve the exponential equation. 27π‘₯+2 = 3
5
2
(5)3
2
(6) 3
5
(7)βˆ’ 3
(8) βˆ’ 3
_______e. The range of 𝑦 = π‘π‘œπ‘  βˆ’1 π‘₯ is
πœ‹
πœ‹ πœ‹
(1) [0, 2 ]
(2) [βˆ’ 2, , 2 ]
πœ‹ 3πœ‹
(3) [ 2 ,
2
]
(4) [0, πœ‹]
5π‘₯+1
_______f. The domain of 𝑦 = π‘₯ 2 βˆ’2π‘₯ is
1
1
(6) π‘₯ ∈ (βˆ’βˆž, βˆ’ 5) βˆͺ (βˆ’ 5 , ∞)
(7) π‘₯ ∈ (2, ∞)
1
(8) π‘₯ ∈ (βˆ’ 5 , ∞)
(9) π‘₯ ∈ (βˆ’βˆž, 0) βˆͺ (0, 2) βˆͺ (2, ∞)
_______g. Convert 75° to radians
πœ‹
(1) 12
_______h. Convert
(1) 29°
(2)
2πœ‹
9
2πœ‹
5
(3)
3πœ‹
5
5πœ‹
(4) 12
to degrees.
(2) 33°
(3) 40°
(4) 50°
_______i. (βˆ’
(5) βˆ’
4√5
5
√5 √11
, 4 ) is
4
a point on the unit circle corresponding to angle 𝑑. Find sin 𝑑.
(6)
4√11
11
(7)βˆ’
√5
4
(8)
√11
4
Here is a blank Sudoku for you to use.