資訊理論 Ch4: Channel 授課老師: 陳建源 Email:[email protected] 研究室:法401 網站 http://www.csie.nuk.edu.tw/~cychen/ Ch4: Channel 4. 1 Introduction Communication system Source Coder Channel Decoder Recipient radio, optical fibre The input alphabet of the channel is the output alphabet of the coder The output alphabet of the channel is the input alphabet of the decoder The output alphabet of the channel may not the same as its the input alphabet Ch4: Channel 4. 1 Introduction noiseless noisy a b Channel a Channel A noisy channel is characterized by the probability that a given output letter stems from an input letter Memory : the output letter depends upon a sequence of input letters b1, b2,… Ch4: Channel 4. 2 Capacity of a memoryless channel A ai B bi Channel A memoryless channel is completely specified by giving P(bs|ak), s=1,…,r, k=1,…,n. r P(b s | ak ) 1 transition probability s 1 The probability of the output letter bs n P(b s ) P(b s | a k )P(a k ) k 1 n P(b s ) P(b s a k ) k 1 Ch4: Channel 4. 2 Capacity of a memoryless channel Mutual information between the input and output P(b s a k ) I(A, B) P(b s a k )log P(b s )P(a k ) k 1 s 1 n r n r P(b s a k )log k 1 s 1 P(b s | a k ) P(b s ) If the transition probabilities are fixed,only the input probabilities can be manipulated. Ch4: Channel 4. 2 Capacity of a memoryless channel Def: The capacity C of a memoryless channel I defined by C maxI(A, B) The maximum being taken over all possible input probabilities p1,p2, …pn while the transition probabilies P(bs|ak) are held fixed. 已知 maximum n P(ak ) 1 k 1 Lagrange’s multiplier n r I(A, B) P(b s a k )log k 1 s 1 P(b s | a k ) P(b s ) Ch4: Channel 4. 2 Capacity of a memoryless channel Lagrange’s multiplier 已知 maximum n P(ak ) 1 k 1 n I(A, B) - P(a k ) k 1 偏微分得到 r P(b s | ak )log s 1 if P(ak ) 0 for all k P(b s | a k ) loge P(b s ) C loge Ch4: Channel 4. 2 Capacity of a memoryless channel Example 4.2a 1-ε 0 0 ε A a1=0 a2=1 ε 1 1 B b1=0 b2=1 1-ε 令 p1 P(a1 ); p2 P(a2 ) n 對 I(A, B) - P(a k ) 之 P(ak ) pk 偏微分 k 1 2 2 2 P(b s | a k ) 即對 P(b s | a k ) p k log pk P(b s ) k 1 s 1 s 1 Ch4: Channel 4. 2 Capacity of a memoryless channel Example 4.2a 2 2 P(b s | a k ) P(b s | ak ) pk log P(b ) pk s k 1 s 1 s 1 之 P(ak ) pk 2 偏微分得到 2 P(b s | ak )log s 1 P(b s | a k ) loge - =0 P(b s ) 得到 C loge Ch4: Channel 4. 2 Capacity of a memoryless channel Example 4.2a 2 P(b s | a k )log C loge s 1 1 - log 當p1=1/2, p2=1/2 K=1 P(b s | a k ) P(b s ) 1- log P(b 1 ) P(b 2 ) P(b1 ) 1/2, P(b 2 ) 1/2 1 - log 1 - log 1/2 1/2 1 - log 1 - 1 - log 1 log 1 - log 1 - C 1 log 1 - log 1 - K=2 亦同 Ch4: Channel 4. 2 Capacity of a memoryless channel Example 4.2b 1-ε 0 A a1=0 a2=1 0 ε ε 1 1 1-ε B b1=0 b2=1 b3=2 2 已知 得到 3 P(b s | a k ) P(b s | ak )log P(b ) loge - =0 s s 1 C loge 3 P(b s | ak )log s 1 P(b s | a k ) P(b s ) Ch4: Channel 4. 2 Capacity of a memoryless channel Example 4.2b 1-ε 0 A a1=0 a2=1 ε 0 ε 1 1 1-ε B b1=0 b2=1 b3=2 2 1 1 - , P(b 2 ) , P(b 3 ) 1 1 - 2 2 1 log 1 log K=2 亦同 1 1 P(b1 ) K=1 2 得到 1 C 1 log log 1 1 2 1 Ch4: Channel 4. 2 Capacity of a memoryless channel Example 4.2c 1 0 A a1=0 a2=1 a3=2 0 B b1=0 b2=1 1/2 1 1/2 2 1 1-ε 已知 得到 2 P(b s | a k ) P(b s | ak )log P(b ) loge - =0 s s 1 C loge 2 P(b s | ak )log s 1 P(b s | a k ) P(b s ) Ch4: Channel 4. 2 Capacity of a memoryless channel Example 4.2c 1 0 A a1=0 a2=1 a3=2 0 B b1=0 b2=1 1/2 1 1/2 2 1 1log 1 K=1 1 2 得到 C 1 2 1 1-ε P(b 1 ) 1 1 , P(b 2 ) 2 2 P(b s | ak )log s 1 1 1/ 2 1 1/ 2 log log 0 K=2 2 1/ 2 2 1/ 2 K=3 P(b s | a k ) P(b s ) 1log 1 1 1 2 Ch4: Channel 4. 3 Convexity Theorem 4.3a The mutual information is a concave function of the input probability, i.e. I(p (0) ) (1 - )I(p (1) ) I(p (0) (1 )p (1) ) for 0 1. Ch4: Channel 4. 3 Convexity Theorem 4.3b I(p) is a maximum (equal to the channel capacity) if, and only if, p is such that (a) I(p) for every k for which p k 0. p k (b) I(p) for every k for which p k 0. p k Ch4: Channel 4. 5 Uniqueness Theorem 4.5a The output probabilities which correspond to the capacity of the channel are unique. Theorem 4.5b In an input which achieves capacity with the largest number of zero probabilies, the non-zero probabilities are determined uniquely and their number does not exceed the number of output letters. Ch4: Channel 練習 Noiseless binary channel 1 0 A a1=0 a2=1 1 0 1 B b1=0 b2=1 C=1 bit 1 Noise channel with nonoverlapping output 1/2 0 A a1=0 a2=1 1/2 1 2 1/3 1 3 2/3 4 B b1=1 b2=2 b3=3 b4=4 C=1 bit Ch4: Channel 練習 Noisy typewriter 0 A a1=0 a2=1 a3=2 a4=3 1 2 1/2 1/2 1/2 1/2 1/2 1/2 3 1 2 1/2 1/2 26 字母 0 C=log13 bits 3 B b1=0 b2=1 b3=2 b4=3 C=1 bit Ch4: Channel 練習 Binary symmetric channel 1-ε 0 A a1=0 a2=1 ε 0 ε 1 1 B b1=0 b2=1 1-ε I(A,B)=H(B)-H(B|A) ≦1-H(B|A) 1 log 1 - log1 - Ch4: Channel 練習 Binary erasure channel 1-ε 0 A a1=0 a2=1 ε 1 ε 1 2 1-ε I(A,B)=H(B)-H(B|A) p=1/2 0 B b1=0 b2=1 b3=2 p(1 ) log p(1 ) log (1 p)(1 ) log(1 p)(1 ) H ( B | A) I(A,B)=1-ε Ch4: Channel 練習 Z channel 1 0 A a1=0 a2=1 0 B b1=0 b2=1 1/2 1 1 1/2 1 log e p(0) 1 1/ 2 1 1/ 2 log log log e 2 p(0) 2 p(1) 1log 1- 1 1 log p(0) log p(1) 0 2 2 p(0) 4 p(1) and p(0) p(1) 1 p(0) 4/5 C log5 - 2 Ch4: Channel 4. 6 Transmission properties I(A, B)=H(A)-H(A|B) the equivocation: measure of the uncertainty as to what was sent when observations are made on the output and so assesses the effect of noise during transmission. Shannon’s theorem I. If H(A) ≦ C, there is a code such that transmission over the channel is possible with an arbitrarily small number of errors, i.e. the equivocation is arbitrarily Shannon’s theorem II. If H(A) > C, there is no code for which the equivocation is less than H(A)-C but there is one for which the equivocation is less than H(A)C+ε where ε is an arbitrary positive quantity. Ch4: Channel 4. 7 Channels in cascade B A Channel 1 C Channel 2 n P(b s ) P(b s | a k )P( a k ) k 1 P(b) P(b | a )P(a) P(c) P(c | b )P(b) P(c) P(c | b )P(b | a)P(a) Ch4: Channel 4. 7 Channels in cascade A C B 3/4 0 3/4 0 1/4 1/4 1/4 1/4 1 1 3/4 1 3/4 3/4 1/4 3/4 1/4 10/16 1/4 3/4 1/4 3/4 6/16 A 6/16 5/8 3/8 10/16 3/8 5/8 C 5/8 0 0 3/8 3/8 1 1 5/8 0 Ch4: Channel 4. 7 Channels in cascade A C 5/8 0 0 3/8 3/8 1 1 5/8 5 5/8 3 3/8 log log log e 8 P(0) 8 P(1) 3 3/8 5 5/8 log log log e 8 P(0) 8 P(1) C P(0) P(1) 3 3/8 5 5/8 3 5 log log log 3 log 5 2 8 1/ 2 8 1/ 2 8 8 5 3 5 5 3 3 5 3 C log 2 H( , ) 1 log log log 5 log 3 2 8 8 8 8 8 8 8 8 Ch4: Channel 4. 7 Channels in cascade The transition probabilities pjk of an infinite cascade are given by 0 1 2 1 2 1 2 1 0 2 1 0 2 1 2 1 3 1 3 1 3 1 1 3 3 1 1 3 3 1 1 3 3
© Copyright 2026 Paperzz