Chapter 8 Theories of Systems 8-1 Laplace Transform Solutions of Linear Systems Linear Systems X AX F (t ) : Consider y(n)+an-1y(n-1)+an-2y(n-2) +…+a1y’+a0y=f(t). Let x1(t)=y(t), x2(t)=y’(t), …, xn(t)=y(n-1)(t) x1 ' 0 x ' 0 2 0 x n ' a 0 1 0 0 1 0 0 a1 a2 0 0 0 1 0 a n 1 0 x1 0 x 0 2 0 x n f (t ) x ' 0 1 x1 0 Eg. y”-3xy’+2y=sin(x) can be transformed into 1 x2 ' 2 3t x2 sin( t ) by t=x, x1(t)=y(x) and x2(t)=y’(x). x 2 x1 3x2 Eg. Solve 1 , x1(0)=8, x2(0)=3 by Laplace transform. x2 2 x1 x2 sX ( s) x1 (0) 2 X 1 ( s) 3 X 2 ( s) (Sol.) L[f’(t)]=sF(s)-f(0) 1 sX 2 ( s) x2 (0) 2 X 1 ( s) X 2 ( s) 5 3 X 1 ( s) s 1 s 4 x (t ) 5e t 3e 4t . 1 t 4t 5 2 x ( t ) 5 e 2 e X (s) 2 2 s 1 s 4 x 2 x 3 y 2 y 4 Eg. Solve , x(0)=x’(0)=y(0)=y’(0)=0 by Laplace transform. 2 y x 3 y 0 4 ( s 2 2s) X ( s ) (3s 2)Y ( s) 2 (Sol.) L[f’’(t)]=s F(s)-sf(0)-f’(0) s sX ( s) (2s 3)Y ( s ) 0 4s 6 s ( 2 s )( s 1) 4 Y (s) 2 s ( s 2)( s 1) X (s) 2 7 1 10 x(t ) 3t e 2t e t 2 6 3 1 2 y (t ) 1 e 2t e t 3 3 ~~74 Eg. According to optical waveguide theory, the E-fields of two identical waveguides A and B fulfill the coupled mode equations dE A dz jE A jE B E A (0) 1 , , where κ is the coupling coefficient. Find dE B jE B jE A E B (0) 0 dz EA(z) and EB(z). (Sol.) L(EA)=ΣA(s) and L(dEA/dz)=sΣA(s)-EA(0)=sΣA(s)-1. Similarly, L(EB)=ΣB(s) and L(dEB/dz)=sΣB(s)-EB(0)=sΣB(s) s j A (s) ( s j ) A ( s) j B ( s) 1 ( s j ) 2 2 , j j A ( s) ( s j ) B ( s) 0 B ( s ) ( s j ) 2 2 s a ] and sin( at ) L1 [ 2 ] ∵ L-1[F(s+a)] = f(t)e-at, cos( at ) L1 [ 2 2 s a s a2 E A ( z ) L1[ A (s)] cos(z )e jz and E B ( z ) L1[ B (s)] j sin( z )e jz . In this case, the coupling length is Lc=π/2κ. While the waveguiding mode traverses a distance of odd multiple of the coupling length (Lc, 3Lc, 5Lc, …, etc), the optical power is completely transferred into the other waveguide. But it is back after a distance of even multiple of the coupling lengths (2Lc, 4Lc, 6Lc, …, etc). If the waveguiding mode traverses a distance of odd multiple of the half coupling length (Lc/2, 3Lc/2, 5Lc/2, …, etc), the optical power is equally distributed in the two guides. y (t ) 6 y (t ) x (t ) Eg. Solve , x(0)=2, y(0)=3. 【交大電信】 3x(t ) x (t ) 2 y (t ) x(t ) 4e 2t 2e 3t (Ans.) y (t ) e 2t 2e 3t ~~75 8-2 Matrix Solutions of Linear Systems Eg. Solve d x1 (t ) 3 2 x1 (t ) . dt x2 (t ) 2 2 x2 (t ) 2 3 2 (Sol.) det 2 0 , λ=2, -1 diagonalizable 2 2 2 1 0 2 3 2 λ1=2, x1 1 , exp[ 2dt ] e 2t 2 2 2 0 2 2 1 2 1 0 1 3 (1) λ2=-1, x2 1 , exp[ (1)dt ] e t 2 (1) 2 0 2 2 2 x (t ) 2 1 ∴ 1 c1 e 2t c2 e t 1 2 x 2 (t ) Eg. Solve d x1 (t ) 1 1 x1 (t ) . dt x2 (t ) 1 3 x2 (t ) 1 1 2 (Sol.) det ( 2) 0 , λ=2, 2 1 3 dim(V)-Rank(A-2I)=1 2=Multiplicity of (λ-2)2 not diagonalizable 1 1 2 1 1 0 λ=2, x1 1 3 2 2 0 1 2 1 0 1 2 1 1 1 x2 1 1 3 2 2 1 2 1 1 x (t ) 1 0 ∴ 1 c1 e 2t c2 te 2t e 2t 1 1 x2 (t ) 1 x1 (t ) 0 1 1 x1 (t ) x3 (t ) 1 1 0 x3 (t ) Eg. Solve d x (t ) 1 0 1 x (t ) . 2 2 dt (Sol.) f(λ)=-λ3+3λ+2=0, λ=2, -1, -1. For λ=-1, dim(V)-Rank(A+I)=2=Multiplicity of (λ+1)2 diagonalizable λ=-1, λ=2, 1 0 1 1 1 0 1 1 1 1 0 1 1 0 0 2 3 0 1 1 0 2 1 02 1 1 1 0 2 1 0 0 2 3 0 1 x2 0 1 or 1 x1 1 1 x1 (t ) 1 1 0 2 t t ∴ x2 (t ) c1 1 e c2 0 e c3 1 et x3 (t ) 1 1 1 ~~76 0 1 1 Eg. Solve d x1 (t ) 1 1 x1 (t ) . dt x2 (t ) 5 3 x2 (t ) (Sol.) f ( ) 2 2 2 0 , 1 i 1 1 2 i 1 1 0 1 λ=-1+i, 3 2 5 2 i 2 0 5 1 [ 1i ] dt , e x1 1 e t [cos(t ) i sin( t )] 2 2 i 1 1 0 λ=-1-i, 1 3 2 0 5 1 [ 1i ] dt , e x1 1 e t [cos(t ) i sin( t )] 2 2 i x1 (t ) 1 t 1 t x (t ) c1 2 i e [cos( t ) i sin( t )] c2 2 i e [cos( t ) i sin( t )] 2 cos(t ) sin( t ) t t c1 e c2 e 2 cos(t ) sin( t ) cos(t ) 2 sin( t ) Eg. Solve d x1 (t ) 4 2 x1 (t ) 1 / t . dt x2 (t ) 2 1 x2 (t ) 2 / t 4 (Sol.) f ( ) 2 5 0 , 0, 5 : diagonalizable 1 2 1 0 x1 and 2 5 x 2 2 1 x (t ) 1 2 Homogeneous solutions: X h 1c c~1 c~2 e 5t 2 1 x2c (t ) Particular solution: Xp = TYp, Xp’=AXp+g(t) TYp’=ATYp+g(t) Yp’=T-1ATYp+ T-1g(t) 1 2 1 1 2 Choose T such that T 1 AT D , T , T 1 5 2 1 2 1 d y1 (t ) 0 0 y1 (t ) 1 1 2 1 / t dt y 2 (t ) 0 5 y 2 (t ) 5 2 1 2 / t 4 5 ln( t ) 8t c1 y1 (t ) 1 5 ln( t ) 8t c1 1 2 1 4 X TY 4 5t p p 2 1 5 c2 e 5t y 2 (t ) 5 5 c 2 e 5 x1 p (t ) 1 8 1 4 2 c1 1 c2 2 5t Xp ln( t ) t 1 5 2 5 1 e x ( t ) 2 2 5 25 2 p 1 1 2 8 1 4 2 x1 (t ) ln( t ) t c1 c2 e 5t 5 2 25 1 2 1 x 2 (t ) 2 ~~77 Eg. There are two species of animals: wolf and fox, interacting within the same forest ecosystem. Let w(t) and f(t) denote the wolf and fox population, respectively, at time t. Suppose further that wolves might eat foxes as food and foxes might also eat wolves as food, but only wolves are hunted by human. If there are no foxes, then one might expect that the wolves, lacking an adequate food supply, would decline in number at a rate of -11w(t). When foxes are present, there is a supply of food, and so wolves are added to the forest at a rate of 3f(t). Furthermore the change rate of the wolf population also positively depends on a seasonal hunting factor, denoted as 100sin(t). On the other hand, if there is no wolves, then the foxes, lacking an adequate food supply, would decline in number at a rate of -3f(t). But when wolves are present, the fox population is increased by a rate of 3w(t). Please answer the following questions: (a) Formulate the above system by a set of differential equations. (b) Use variation of parameters to solve the system. (c) What are the steady-state populations of the wolf and fox, respectively? [台大電研] (Sol.) (a) d w(t ) 11 3 w(t ) 100 sin( t ) . 0 dt f (t ) 3 3 f (t ) 11 3 1 3 (b) A= , f(λ)= λ2+14λ+24=0, λ1= -2 x1= , λ2= -12 x2= 3 3 3 1 w (t ) 1 3 Homogeneous solution Xh: Xh= h c~1 e 2t c~2 e 12t 3 1 f h (t ) Particular solution: Xp = TYp, Xp‘=AXp+g(t) TYp’=ATYp+g(t) Yp’=T-1ATYp+ T-1g(t) 1 / 10 3 / 10 1 3 Let T fulfill T 1 AT D , T , T 1 3 / 10 1 / 10 3 1 d y1 (t ) 2 0 y1 (t ) 1 / 10 3 / 10 100 sin( t ) 0 dt y 2 (t ) 0 12 y 2 (t ) 3 / 10 1 / 10 2 t y1 (t ) 4 sin( t ) 2 cos(t ) c1e 72 sin( t ) 6 cos(t ) c e 12t =Yp, Xp=TYp y ( t ) 2 2 29 29 2 t w(t ) ~ 1 2t ~ 3 12t 1 3 4 sin( t ) 2 cos(t ) c1e c1 3 e c2 1 e + 3 1 72 sin( t ) 6 cos(t ) c e 12t f ( t ) 2 29 29 1 3 1 c1 e 2t c 2 e 12t + 29 3 1 332 1 276 sin( t ) - 29 w(t ) 1 332 1 sin( t ) (c) As t→∞, 29 f (t ) 29 276 76 168 cos(t ) 76 168 cos(t ) : steady-state solution ~~78 Eg. Solve d x1 (t ) 5 / t 1 / t x1 (t ) . dt x2 (t ) 3 / t 1 / t x2 (t ) 2 4 (Sol.) det 5 / t 1 / t 0 , 1 / t 3 / t t t 1 2 1 / t 4 , ( A 2 I ) x 2 t 3 / t 2 e t dt 1 / t 1 1 0 x1 1 1 / t 2 2 3 3 / t 2 , ( A 1 I ) x1 t 3 / t 1 / t 1 1 0 x2 1 3 / t 2 2 1 4 e 2 ln|t| t 2 , e t dt e 4 ln|t| t 4 t2 x (t ) 1 1 ∴ 1 c1 t 2 c2 t 4 2 3 1 x2 (t ) 3t Eg. Solve t 4 c1 (t ) C t 4 c2 d x1 (t ) 5 / t 1 / t x1 (t ) 1 . dt x2 (t ) 3 / t 1 / t x2 (t ) t 5 / t (Sol.) Homogeneous solutions: Φ(t).C. Note: Φ’(t) 3 / t Particular solution: X p (t ) (t ) u (t ) 5 / t X p ' (t ) (t ) u (t ) (t ) u (t ) 3 / t 1/ t Φ(t) 1 / t 1/ t u (t ) (t ) u (t ) 1 / t 5 / t 1 / t 1 1 X p (t ) (t )u ' (t ) 3 / t 1 / t t t 1 1 1 / t 2 d u1 (t ) 1 u ' (t ) (t ) 4 dt u 2 (t ) t 2 3 / t 1 / t 1 1 / t 4 t 2 1 1 2t 2 2t 3 1 4 3 2t 2t 1 1 u1 (t ) 2t 2 ln | t | u 2 (t ) 1 1 2t 3 4t 2 t2 1 1 1 2 ln | t | t ln | t | 2 t 2t 2 4 2 2 t 4 1 1 t 3t ln( t ) t 2t 3 4t 2 2 4 x1 p (t ) t X p (t ) 2 x ( t ) 2 p 3t 2 x (t ) t ∴ 1 2 x2 (t ) 3t 2 4 1 2 t2 t ln | t | t c1 2 4 2 2 4 t c2 t 3t ln( t ) t 2 4 4 ~~79 8-3 Nonlinear Systems and Phase Planes dx dt F ( x, y ) Autonomous system: , where F(x,y) and G(x,y) are both independent dy G ( x, y ) dt of t. Phase plane: The xy-plane for the analysis of the autonomous systems. dx dt F ( x, y ) ax by P( x, y ) P ( x, y ) Q ( x, y ) lim 0. Theorem , lim ( x , y ) ( 0 , 0 ) x 2 y 2 ( x , y ) ( 0 , 0 ) x 2 y 2 dy G ( x, y ) cx dy Q( x, y ) dt We have λ2-(a+d)λ+ad-bc=0 λ=λ1, λ2 1. λ1≠λ2, λ1, λ2: real, λ1λ2>0, then (0,0) is a node. Stable node in case of λ1<0 and λ2<0. Unstable node if λ1>0, λ2>0. 2. λ1≠λ2, λ1, λ2: real, λ1λ2<0, then (0,0) is a saddle point. 3. λ1, λ2: complex with nonzero real part, then (0,0) is the point, which a spiral approaches it. Stable spiral in case of Re(λ)<0. Unstable spiral if Re(λ)>0. 4. λ1, λ2: pure imaginary, then (0,0) is a center of a closed curve. ~~80 dx dt 4 x 2 y 4 xy Eg. , dy x 6 y 8 x 2 y dt lim ( x , y )( 0, 0 ) 4 xy x2 y2 lim ( x , y )( 0, 0 ) 8x 2 y x2 y2 0 λ2-10λ+26=0 λ=5 i, Re(λ)=5>0, ∴ (0,0) is an unstable spiral point. dx dt 3x y Eg. λ2+6λ+8=0, λ=-4, -2, and (-4)(-2)=8>0: negative and distinct, dy x 3y dt x(t ) c1e 4t c 2 e 2t 0 ∴ (0,0) is a stable node. Check: y (t ) c1e 4t c 2 e 2t 0 dx dt x 3 y Eg. λ2+3λ-4=0, λ=1, -4, 1 -4, and 1(-4)<0, ∴ (0,0) is a saddle dy 2x 2 y dt x(t ) c1e t c 2 e 4t point. Check: . If c1=0, (x(t),y(t))→(0,0). But in case of 2 t 4t y (t ) c1e c 2 e 3 c1 0 , ( x(t ), y (t )) (, ) dx dt 3x y Eg. λ2+4=0, λ= 2i, ∴ (0,0) is a center of a closed curve. dy 13 x 3 y dt x(t ) c1 cos(2t ) c2 sin( 2t ) Check: y(t ) (2c2 3c1 ) cos(2t ) (2c1 3c2 ) sin( 2t ) Critical point: (xc,yc) fulfills both F(xc,yc)=0 and G(xc,yc)=0. x F ( x, y ) Theorem C is the closed trajectory of the autonomous system , y G( x, y ) where F and G C1(x,y), then there exists at least one critical point of the system enclosed by C. Three types of limit cycles: Stable, unstable, and semi-stable limit cycles. ~~81 ~~82 x x y x x 2 y 2 Eg. Find the trajectory of the following system: . y x y y x 2 y 2 (Sol.) Let x=rcosθ, y=rsinθ, x’=-rsinθ.θ’, y’=rcosθ.θ’ ∵ r2=x2+y2, ∴ rr’=xx’+yy’= x2+y2- ( x 2 y 2 ) x 2 y 2 =r2-r3 r r (1 r ) (1) ∵ yx’-xy’= rsinθ(-rsinθ.θ’)- rcosθ(rcosθ.θ’)=-r2θ’, ∴ -r2θ’=yx’-xy’=x2+y2= r2 r 2 r 2 1 (2) 0 t 1 (1) and (2) r r 1 t 1 0 e r0 If r0 1 r 1 ; else if r0 1 r 1 ; else, r0 1 r 1 . In this example, the unit circle r=1 is a stable limit cycle. 8-4 Some Approximate Solutions of Nonlinear Ordinary Differential Equations Eg. For a simple pendulum of mass m with a thread of length l, show that d 2 g sin 0 . Solve it and obtain its period. [台大電研] dt 2 1 d 2 ) =Constant (Sol.) Total energy is conservative: mg (l l cos ) m(l 2 dt Let u d 2 g sin 0 dt 2 d du g d g du d 2 sin 0 , u 2 u ' sin 0 u l dt dt dt dt dt udu g u2 g sin d (cos cos 0 ) , where 0 is the initial angle 2 d 2 g (cos cos 0 ) u dt dt Period: T 4 T00 dt 4 00 If θ is small, sin d 1/ 2 2g (cos cos 0 ) d 1/ 2 2g (cos cos 0 ) g g d 2 g t c 2 sin t 0 c1 cos 2 dt ~~83 Eg. Solve Van der Pol’s equation y (t ) [ y 2 (t ) 1] y (t ) y(t ) 0 . (Sol.) For ε=0, y (t ) A sin( t ) , y ' (t ) A cos(t ) If ε is small, y (t ) A(t ) sin[ t (t )] …(1), y (t ) A(t ) cos[t (t )] …(2) y (t ) A(t ) sin[ t (t )] A(t ) cos[t (t )] [1 (t )] …(3) (2), (3) A(t ) sin[ t (t )] A(t ) (t ) cos[t (t )] 0 …(4) (2) y (t ) A(t ) cos[t (t )] A(t ) sin[ t (t )] [1 (t )] …(5) (2), (5) A(t ) cos[t (t )] A(t ) (t ) sin[ t (t )] [1 A2 (t ) sin 2 [t (t )] A(t ) cos[t (t )] (we set t (t ) ) A 3 (t ) A 3 (t ) A(t ) cos( ) cos(3 ) …(6) 4 4 2 0 cos( ) (6) d A(t ) A(t ) 2 0 sin( ) (6) d (t ) 0 1/ 2 A 3 (t ) 1 : Bernoulli ' s equation A(t ) 2 2t 4 1 ce (t ) 0 1 y (t ) 2 2t 1 ce 1/ 2 sin( t 0 ) d2y Eg. Obtain the particular solution of 2 y y 3 cos( x) . 2 dx (Sol.) Suppose y ( x, ) y 0 ( x) y1 ( x) 2 y 2 ( x) [ y 0 ( x) y1( x) 2 y 2 ( x) ] 2 [ y 0 ( x) y1 ( x) 2 y 2 ( x) ] [ y 0 ( x) y1 ( x) 2 y 2 ( x) ]3 cos( x) [ y 0 ( x) 2 y 0 ( x)] [ y1( x) 2 y1 ( x) y 03 ( x)] 2 [ y2 ( x) 2 y2 ( x) 3 y0 ( x) y1 ( x)] O( 3 ) cos( x) 2 y 0 ( x) 2 y 0 ( x) cos( x) , y1( x) 2 y1 ( x) y 03 ( x) y 2 ( x) 2 y 2 ( x) 3 y 02 ( x) y1 ( x) Solve y0 ( x) , y1 ( x) , … Eg. Obtain the approximate particular solution of y 1 y 0.1 y 3 cos( x) . 4 (Sol.) y ( x; ) y 0 ( x) y1 ( x) 2 y 2 ( x) 3 y 3 ( x) y0 ( x) y1 ( x) y 0 " 4 1 y 0 ( x ) cos( x ) y 0 cos( x) 4 3 3 64 64 1 4 cos(3x) y1( x) y1 ( x) cos( x) y1 cos( x) 27 945 4 3 y( x) y0 ( x) 0.1y1 ( x) 1.57 cos( x) 0.006 cos(3x) ~~84 8-5 Sturm-Liouville Theory Consider y”+R(x)y’+[Q(x)+λP(x)]y=F(x), multiply it by e R ( x ) dx , and then let r(x)= e R ( x ) dx , q(x)=Q(x) e R ( x ) dx , p(x)=P(x) e R ( x ) dx , and f(x)=F(x) e R ( x ) dx Sturm-Liouville form: [r(x)y’(x)]’+[q(x)+λp(x)]y(x)=f(x) Eg. Find the eigenvalues and eigenfunctions of y”-2y’+2(1+λ)y=0 with boundary conditions y(0)=y(1)=0, and transform it into the Sturm-Liouville form. [台大造 船所] (Sol.) r2-2r+2(1+λ)=0, r 1 1 2(1 ) 1 (2 1) 1 If , r=1, 1 y=Aex+Bxex 2 y(0)=y(1)=0 A=B=0, ∴ trivial solutions 1 If , -(2λ+1)>0, r=1±k y=Ae(1+k)x+Be(1-k)x 2 y(0)=y(1)=0 A=B=0, ∴ trivial solutions 1 If , -(2λ+1)<0, r=1±ki y=ex(Acoskx+Bsinkx) 2 y (0) 0 A 0 x n 2 2 1 , ∴ the corresponding eigenfunction is e sin(nπx) y ( 1 ) 0 k n 2 e 2dx =e-2x, y”e-2x-2e-2xy’+2(1+λ)e-2xy=0 [e-2xy’(x)]’+[2e-2x+λ2e-2x]y(x)=0 Eg. Find the eigenvalues and eigenfunctions of x2y”+xy’-λy=0 with boundary conditions y(1)=y(a)=0, 1<x<a. 【台大機研】 (Sol.) r2+(1-1)r-λ=0, r If λ=0, y( x) c1 x 0 c2 x 0 n( x) c1 c2 n( x) , c1 c2 n(1) 0 c1=c2=0. c1 c2 n(a) 0 d1 1 d 2 1 0 d1=d2=0 If λ>0, set λ=k2, y( x) d1 x k d 2 x k , k k d1a d 2 a 0 If λ<0, set λ=-k2, y( x ) e1 x ki e2 x ki e1 eik ln( x ) e2 e ik ln( x ) h1 cos[k ln( x )] h2 sin[ k ln( x)] y(1)=0 h1=0, y(a)=0 k= n ln( x) n n 2 [ ] y ( x) sin[ ] ln( a) ln( a ) ln( a) ~~85 Sturm-Liouville theorems 1. For the two distinct λn and λm of the Sturm-Liouville problem, with corresponding functions φn and φm, then p(x) fulfills ba p( x) n ( x) m ( x)dx 0 if n m. 2. For the regular Sturm-Liouville problem, and two eigenfunctions corresponding to a given eigenvalue are linearly dependent. Eg. For y”+λy=0, y(0)=y(π/2)=0. 1. If λ=0, y=ax+b a=b=0: trivial solution 2. If λ=k2>0, y=acos(kx)+bsin(kx) a=0, k=2n λ=k2=4n2 3. If λ=-k2<0, y=aekx+be-kx no solutions And p(x)=1, /2 0 p ( x) sin( 2nx) sin( 2mx)dx 0 if n≠m. Eg. The eigenfunctions and their corresponding eigenvalues of the stationary 2 2 Helmholtz equation =-k2ψ are presented as follows. x 2 y 2 The first eigenfunction, k2 = 106.6774 The second eigenfunction, k2 = 254.2339 The third eigenfunction, k2 = 286.0975 The tenth eigenfunction, k2 = 960.0726 ~~86 Eg. Given a refractive index distribution n(x,y), the eigenmodal function Φ(x,y) 2 2 2 of an optical waveguide fulfills 2 +k n(x,y)2Φ=β2Φ, where β2 is the 2 x y eigenvalue and β represents the phase constant of the lossy waveguide or the propagation constant of the lossless waveguide. The eigenmodes of some optical waveguides are presented as follows. If the eigenmode is injected into an infinitely-long straight waveguide, it can propagate along the waveguide without any deformation. However, in case the input light is not an eigenmode, some optical power loss occurs and then it becomes the eigenmode gradually. ~~87 Eg. One-dimensional wave function Ψ(x) in a quantum well 0, 0 x L with infinitely hard walls, V= , fulfills , elsewhere d2Ψ/dx2+2mEΨ/ 2=0 in 0≦x≦L with boundary conditions Ψ(0)=Ψ(L)=0. It can be transformed into the eigenvalue 2 d 2 problem as E . It is proved that the 2m dx 2 n 2 2 2 eigenvalue E is quantized as En= and the corresponding eigenfunction is 2mL2 Ψn(x)= 2 / L sin(nπx/L). Eg. One-dimensional wave function Ψ(x) in a quantum well with two finite potential walls, 0, 0 x L V= , fulfills V , elsewhere d 2 I 2m 2 ( E V ) I 0 2 dx d 2 II 2m 2 II 0 with boundary 2 2 dx d III 2m ( E V ) 0 III dx 2 2 conditions: ΨI(0)=ΨII(0), ΨII(L)=ΨIII(L), ΨI’(0)=ΨII’(0), ΨII’(L)=ΨIII’(L). And the I ( x) Cex 2mE x 2mE x ) B cos( ). eigenfunctions have the forms as II ( x) A sin( III ( x) De x ~~88 Eg. Tunnel Effect: One-dimensional wave function Ψ(x) in a quantum V ( E ), 0 x L barrier, V(x)= , elsewhere 0, fulfills d 2 I 2m 2 E I 0 2 dx 2 d II 2m 2 ( E V )II 0 with 2 dx 2 d III 2m E 0 III dx 2 2 boundary conditions: ΨI(0)=ΨII(0), ΨII(L)=ΨIII(L), ΨI’(0)=ΨII’(0), ΨII’(L)=ΨIII’(L). And hence the eigenfunctions have the forms as I ( x) Ae ik1x Be ik1x 2m(V E ) 2mE 2mE ik x ik x , k2= , k3= =k1. II ( x) Ce 2 De 2 , where k1= ik3 x III ( x) Fe The quantum mechanics can prove that the transmission probability is 16 2 k2 L e 2 k 2 L . T=|ΨIII+|2/|ΨI+|2=|F|2/|A|2 [ 4 ( K / K ) 2 ] e 2 1 ~~89
© Copyright 2026 Paperzz