16MA102 – ENGINEERING MATHEMATICS II a b c 1) Obtain the value of dxdydz 0 0 0 a) xyz b) abz c) abc d) xbc Ans: c a 2) Evaluate rdrd Ans:b 0 0 a) 2 b) a 2 2 a2 c) 0 d) 2 3) Find curl(grad )= a) j b) 1 c) 0 d) k Ans: c 4) If A and B are irrotational then A B is a) irrotational b) unit vector c) scalar potential d) solenoidal 5) Find the constants a and b if f(z)=x+2ay+i(3x+by) is analytic a) -3/2,1 b) 1,-3/2 7) If f(z)= c) 3 b) 1,3 Ans:a c) 1,2 d) ½,2 6) Find the fixed points of the mapping w= a)3,2 Ans :d 6z 9 z d) 3,3 Ans: d 1 2[1 ( z 1) ( z 1) 2 ...] ,find the residue of f(z) at z=1 z 1 a) -1 b) 1 c)2 8) Evaluate zdz d)0 Ans: b ( z 1)( z 2) where c is the circle |z|=1/2 b) -1 c) 2 d)0 c a) 1 Ans: d 9) If L[f(t)]=F(s),then L[eat f(t)]= a)F(s-a) b)F(s+a) b)F(a-s) d)0 Ans: a 10)Find L[sin2t]= SNS COLLEGE OF TECHNOLOGY (AUTONOMOUS) Page 1 16MA102 – ENGINEERING MATHEMATICS II a) 2 s 22 b) 2 s s 22 c) 2 2 s 2 2s s 22 d) 2 Ans:a 2 4 2 11) The change of order of integration of the integral f ( x, y)dxdy 1 0 2 4 4 2 a) f ( x, y)dxdy b) f ( x, y)dydx 0 1 1 0 4 2 c) f ( x, y)dxdy 4 2 d) f ( x, y)dxdy 1 0 Ans:b 1 0 / 2 sin rdrd 12) The value of a) 2 0 0 b) 4 c) 8 d) Ans:d d)1 Ans: a 13) If is a constant then is a) 0 b)2 c)6 14) Stoke’s theorem relates a)surface integral to volume integral b)line integral to surface integral c)line integral to volume integral d)None of these Ans: b d) u x v y Ans: d 15) One of the C-R Equation is a) u x v y b) u y v x 16) The point at which f(z) = a) z=1 17) The value of 18)If f(z)= z ceases to be analytic z 1 b) z=0 z c a) 6i c) u xx v yy c)z=2 d) z=3 Ans: a d) 0 Ans:d zdz where C is |z|=1/2 is 2 1 b) 18i c) 4i sin z ,z=0 is a z a)pole b)simple pole Ans:c c)Removable singularity SNS COLLEGE OF TECHNOLOGY (AUTONOMOUS) d)Essential singularity Page 2 16MA102 – ENGINEERING MATHEMATICS II 19) If L[f(t)]=F(s),then L is t f (t ) a) f (t )dt b) F ( s)ds s s 20) If L[f(t)]= 1 1−𝑥 c) F (s)ds d) f (s)ds s 1 then lim f(t) is t s( s a) a)-a 21.∫0 ∫0 (a) ½ Ans:b b)a Ans:c c)1/a 𝑑𝑥 𝑑𝑦 is (b) 1-X d)-1/a (c) 1-y 𝑥2 (d) 0 Ans: (a) 𝑦2 22.Area of the ellipse 2 + 2 = 1 is 𝑎 𝑏 (a) πa2b (b) πab2 (c) πab (d) π2ab Ans: (c) ⃗⃗ are irrotational then div(𝐴⃗ X 𝐵 ⃗⃗) is 23.If 𝐴⃗ and 𝐵 (a) Solenoidal (b) irrotational (c) ⃗0⃗ (d) 1 Ans: a ⃗⃗⃗⃗⃗ 24.Using Stoke’s theorem, the value of ∫𝑐 𝑟⃗ ∙ 𝑑𝑟 (a) 0 (b) 1 (c) 3 (d) -1 Ans: (a) 25.If u is to be harmonic, then 𝑢𝑥𝑥 + 𝑢𝑦𝑦 is (a) 1 (b) 2 (c) 3 (d) 0 Ans: (d) 5𝑍+4 26.The fixed points of the mapping 𝑤 = are 𝑍+5 (a) 2, 2 (b) 2, -2 (c) -2, -2 (d)-4/5, 5 27.The value of ∫𝑐 (a) 2πi (b) 0 3𝑧 2 +7𝑧+1 Ans: (b) 1 𝑑𝑧 where C is |𝑧| = is 𝑧+1 2 (c) πi (d) πi/2 Ans: (b) 1 28.Residue of 𝑒 𝑧 at z=0 is (a) 0 (b) 1 (c) ∞ (d) -1 SNS COLLEGE OF TECHNOLOGY (AUTONOMOUS) Ans: b Page 3 16MA102 – ENGINEERING MATHEMATICS II 29.𝐿−1 [ 1 ] is 𝑠(𝑠 2 +1) (a) 1+sint (b) 1- sint (c)1+cost (d)1-cost Ans: d 30.If L[f(t)] = F(s) then L[tn f(t)] = 𝑛−1 n-1 𝑑 (a) (-1) 𝑑𝑠 𝑛−1 𝐹(𝑠) (b) 𝑑𝑛 𝑑𝑠 𝑛 Ans: (c) 𝑛 n𝑑 𝐹(𝑠) (c) (-1) 𝑑𝑠 𝑛 𝐹(𝑠) (d) 𝑑 𝑛−1 𝑑𝑠 𝑛−1 𝐹(𝑠) 𝑡 31.If L[f(t)] = F(s) then L[f( )] = 2 (a) ½ F[2s] (b) ½ F[s/2] (c) 2F[2/s] (d) 2F[2s] Ans: (d) 𝑒𝑧 32.The order of the pole z = 0 of the function 3 is 𝑧 (a) 0 (b) 3 (c) 1 (d) 2 Ans: (b) 33.The transformation w = c+ z where c is real is known as (a) Rotation (b) magnification (c) reflection (d) translation Ans: (d) 34.The value of ∫𝑐 (a) 0 (b) πi 𝑧2 𝑧−3 𝑑𝑧 where C is |𝑧| = 1 is (c) 2πi 35.If 𝐹⃗ is a conservative, then ∇ 𝑋 𝐹⃗ = (a) 2 (b) 3 (c) 1 (d) 3πi Ans: (a) (d) 0 Ans: (d) 36. The analytic function with constant imaginary part is (a) Need not to be a constant (b) constant (b) Conformal mapping (d) bilinear transformation 1 𝑥 37. Change of order of integration ∫0 ∫0 𝑥𝑦𝑑𝑦𝑑𝑥 is 0 1 1 𝑦 Ans: (b) (a) ∫1 ∫𝑦 𝑥𝑦𝑑𝑥𝑑𝑦 1 1 0 𝑦 (b) ∫0 ∫𝑦 𝑥𝑦𝑑𝑥𝑑𝑦 (c) ∫0 ∫1 𝑥𝑦𝑑𝑥𝑑𝑦 (d) ∫1 ∫1 𝑥𝑦𝑑𝑥𝑑𝑦 Ans: (c) ⃗⃗ (d) 𝑖⃗ + 𝑗⃗ + 𝑘 Ans: (c) 38. If 𝜑 = 𝑥𝑦𝑧, then grad𝜑 at (1, 1, 1) = ⃗⃗ (b) 𝑖⃗ − 𝑗⃗ + 𝑘 ⃗⃗ (a) 𝑖⃗ + 𝑗⃗ − 𝑘 ⃗⃗ (c) 𝑖⃗ + 𝑗⃗ + 𝑘 SNS COLLEGE OF TECHNOLOGY (AUTONOMOUS) Page 4 16MA102 – ENGINEERING MATHEMATICS II 39. Laplace transform of t4 e-at is 4! (a) (b) (𝑠+𝑎)4 5! 4! (c) (𝑠+𝑎)5 (d) (𝑠+𝑎)5 5! (𝑠−𝑎)5 Ans: (c) 40. 𝑑𝑖𝑣 𝑟̅ = _____ a.0 b)1 c)3 d)2 Ans. c 41. The fixed points of the mappings of 𝑤 = a)+i and –i b) +1 and -1 b)0 1−𝑧 are c) 0 and 1 42. If z=a is a point outside C, then ∫𝑐 a)1 1+𝑧 𝑑𝑧 Ans. a = ______ 𝑧−𝑎 c) -1 d) 0 and i d)2 Ans. b 43. The Laplace L[cos at]= a) 1 b) 𝑠 2 +𝑎2 𝑠 𝑠 2 +𝑎2 c) 𝑎 d)1 𝑠 2 +𝑎2 Ans. b 44. The Cauchy-Riemann equations are a) 𝜕𝑢 𝜕𝑥 c) 𝜕𝑣 = 𝜕𝑢 𝜕𝑥 𝜕𝑦 =− ; 𝜕𝑢 𝜕𝑦 𝜕𝑣 𝜕𝑦 ; =− 𝜕𝑢 𝜕𝑦 𝜕𝑣 b) 𝜕𝑥 =− 𝜕𝑣 𝜕𝑢 𝜕𝑥 d) 𝜕𝑥 3 = 𝜕𝑢 𝜕𝑥 𝜕𝑣 𝜕𝑦 =− ; 𝜕𝑢 𝜕𝑦 𝜕𝑣 𝜕𝑦 ; = 𝜕𝑢 𝜕𝑦 2 45. Change the order of integration in ∫0 ∫1 𝑥𝑦(𝑥 + 𝑦)𝑑𝑦𝑑𝑥 2 3 a) ∫1 ∫0 𝑥𝑦(𝑥 + 𝑦)𝑑𝑥𝑑𝑦 2 3 2 3 2 3 𝜕𝑣 𝜕𝑥 = 𝜕𝑣 𝜕𝑥 Ans. a Ans:a b) ∫1 ∫0 𝑥𝑦(𝑥 + 𝑦)𝑑𝑦𝑑𝑥 d) ∫1 ∫0 (𝑥 + 𝑦)𝑑𝑥𝑑𝑦 c) ∫1 ∫0 𝑥𝑑𝑥𝑑𝑦 2 5 46. The value of ∫1 ∫2 𝑥𝑦𝑑𝑥𝑑𝑦 is a)6 b)12.35 c)15 d)15.75 Ans. d 47. If 𝐴̅ = 𝑐𝑢𝑟𝑙𝐹̅ , the value of ∬𝑠 𝐴̅ . 𝑛̅𝑑𝑠 is ______ a)2 b)0 c)3 d)1 48. The inverse Laplace transform of a)1 b)0 c)3𝑒 −2𝑡 3 𝑠+2 Ans:c d) 3𝑒 𝑡 SNS COLLEGE OF TECHNOLOGY (AUTONOMOUS) Page 5 16MA102 – ENGINEERING MATHEMATICS II 49. The Singularities of the function f(z)= a)-2 and -1 b)2 and -1 𝑧+2 (𝑧−2)(𝑧+1)2 c)2 and 1 d)0 and 1 Ans. b 50. Express the volume bounded by x=0, y=0, z=0, x+y+z=1 in triple intergration 𝑥 𝑦 𝑧 𝑥 a)∫0 ∫0 ∫0 (𝑥 + 𝑦 + 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 𝑥 1−𝑥 c) ∫0 ∫0 1−𝑥−𝑦 𝑥 𝑦 1−𝑥−𝑦 ∫0 𝑑𝑧𝑑𝑦𝑑𝑥 𝑧 d) ∫0 ∫0 ∫0 (𝑥 + 𝑦 + 𝑧)𝑑𝑧𝑑𝑦𝑑𝑥 𝑑𝑥𝑑𝑦𝑑𝑧 ∫0 1−𝑥 b) ∫0 ∫0 Ans. b 51. If 𝑐𝑢𝑟𝑙𝐹̅ = 0 then 𝐹̅ is called an a)Solenoidal b)Irrotational c)Unit vector d)Directive derivative Ans. b 𝑟̅ 52. ∇. ( ) = _____ 𝑟 a)2r b) 𝑟 c) 2 2 4 d) 𝑟 Ans:c 𝑟 53. If u(x,y)=2x+x2-my2 is harmonic, then the value of m is a)1 b)0 c)4 d)2 Ans. a 54. The image of |z|=1 under the mapping w=1/z is a)𝑢2 + 𝑣 2 = 1 b) 𝑢2 + 𝑣 2 > 1 55. The value of ∫𝑐 𝑧 𝑑𝑧 where c is |z|= is 2 b) 18𝜋𝑖 56. If f(z)= a)Zero sin 𝑧 𝑧 Ans. a 1 𝑧 2 −1 a)6𝜋𝑖 c) 𝑢2 + 𝑣 2 < 1 d) 𝑢2 + 𝑣 2 = 0 c) 4𝜋𝑖 d)0 Ans. d then z=0 is Ans:c b) Essential singularity c)Removable singularity d)Isolated singularity 57. L[𝑒 𝑎𝑡 ]= _____ a) 1 b) 𝑠−𝑎 1 c)s-a 𝑠+𝑎 d)s+a Ans. a 58. L[cos3t]= a) 𝑠 𝑠 2 −32 b) 𝑠 𝑠 2 +32 c) 𝑎 𝑠 2 −32 SNS COLLEGE OF TECHNOLOGY (AUTONOMOUS) d) 𝑎 𝑠 2 +32 Ans. b Page 6
© Copyright 2026 Paperzz