Linear Programming : Introductory Example THE PROBLEM A factory produces two types of drink, an ‘energy’ drink and a ‘refresher’ drink. The day’s output is to be planned. Each drink requires syrup, vitamin supplement and concentrated flavouring, as shown in the table. The last row in the table shows how much of each ingredient is available for the day’s production. How can the factory manager decide how much of each drink to make? THE PROBLEM Syrup Vitamin supplement Concentrated flavouring 5 litres of energy drink 1.25 litres 2 units 30 cc 5 litres of refresher drink 1.25 litres 1 unit 20 cc Availabilities 250 litres 300 units 4.8 litres Energy drink sells at £1 per litre Refresher drink sells at 80 p per litre FORMULATION Syrup constraint: Let x represent number of litres of energy drink Let y represent number of litres of refresher drink 0.25x + 0.25y 250 x + y 1000 FORMULATION Vitamin supplement constraint: Let x represent number of litres of energy drink Let y represent number of litres of refresher drink 0.4x + 0.2y 300 2x + y 1500 FORMULATION Concentrated flavouring constraint: Let x represent number of litres of energy drink Let y represent number of litres of refresher drink 6x + 4y 4800 3x + 2y 2400 FORMULATION Objective function: Let x represent number of litres of energy drink • Energy drink sells for £1 per litre Let y represent number of litres of refresher drink • Refresher drink sells for 80 pence per litre Maximise x + 0.8y SOLUTION 1600 Empty grid to accommodate the 3 inequalities y 1400 1200 1000 800 600 400 200 x - 200 200 - 200 400 600 800 1000 1200 SOLUTION 1600 1st constraint y 1400 Draw boundary line: 1200 x + y = 1000 1000 800 600 400 200 x - 200 200 - 200 400 600 800 1000 1200 x y 0 1000 1000 0 SOLUTION 1600 1st constraint y 1400 Shade out unwanted region: 1200 1000 x + y 1000 800 600 400 200 x - 200 200 - 200 400 600 800 1000 1200 SOLUTION 1600 Empty grid to accommodate the 3 inequalities y 1400 1200 1000 800 600 400 200 x - 200 200 - 200 400 600 800 1000 1200 SOLUTION 1600 2nd constraint y Draw boundary line: 1400 1200 2x + y = 1500 1000 800 600 400 200 x - 200 200 - 200 400 600 800 1000 1200 x y 0 1500 750 0 SOLUTION 1600 2nd constraint y Shade out unwanted region: 1400 1200 1000 2x + y 1500 800 600 400 200 x - 200 200 - 200 400 600 800 1000 1200 SOLUTION 1600 Empty grid to accommodate the 3 inequalities y 1400 1200 1000 800 600 400 200 x - 200 200 - 200 400 600 800 1000 1200 SOLUTION 1600 3rd constraint y Draw boundary line: 1400 1200 3x + 2y = 2400 1000 800 600 400 200 x - 200 200 - 200 400 600 800 1000 1200 x y 0 1200 800 0 SOLUTION 1600 3rd constraint y Shade out unwanted region: 1400 1200 3x + 2y 2400 1000 800 600 400 200 x - 200 200 - 200 400 600 800 1000 1200 SOLUTION 1600 All three constraints: y 1400 First: 1200 x + y 1000 1000 800 600 400 200 x - 200 200 - 200 400 600 800 1000 1200 SOLUTION 1600 All three constraints: y 1400 First: 1200 x + y 1000 1000 800 Second: 600 2x + y 1500 400 200 x - 200 200 - 200 400 600 800 1000 1200 SOLUTION 1600 All three constraints: y 1400 First: 1200 x + y 1000 1000 800 Second: 600 2x + y 1500 400 Third: 200 x - 200 200 - 200 400 600 800 1000 1200 3x + 2y 2400 SOLUTION 1600 All three constraints: y 1400 First: 1200 x + y 1000 1000 800 Second: 600 2x + y 1500 400 Third: 200 x - 200 200 - 200 400 600 800 1000 1200 3x + 2y 2400 Adding: x 0 and y 0 SOLUTION 1600 Feasible region is the unshaded area and satisfies: y 1400 1200 1000 x + y 1000 800 2x + y 1500 600 3x + 2y 2400 400 x 0 and y 0 200 x - 200 200 - 200 400 600 800 1000 1200 SOLUTION 1600 Evaluate the objective function x + 0.8y at vertices of the feasible region: y 1400 1200 A 1000 800 B O: 0 + 0 = 0 600 A: 0 + 0.8x1000 = 800 C 400 200 D - 200 O 200 400 600 800 x 1000 1200 - 200 Maximum income = £800 at (400, 600) B: 400 + 0.8x600 = 880 C: 600 + 0.8x300 = 840 D: 750 + 0 = 750
© Copyright 2026 Paperzz