Jens Eggers The role of singularities in hydrodynamics A shock wave a jump in density occurs at some finite time t0 ! W.C. Griffith, W. Bleakney Pinch-off singularity : 0.0065t '0.661 Burton et al, PRL `04 t ' t0 t (nanoseconds) L Harold Edgerton neck radius shrinks to zero in finite time Universality experiment by Shi et al. Drops and bubbles water drop in air Shi et al. very different! air bubble in water Thoroddsen et al. Corner singularity U Quéré, Fermigier, Clanet Huh and Scriven’s paradox: no motion for micro 0! Pouring a viscous liquid fluid jet Eggers, PRL `01 Lorenceau, Restagno, Quéré, PRL `03 Lorenceau, Quéré, Eggers, PRL `04 viscous fluid cusp cusp forms Charged drop experiment: Leisner et al. theory: Fontelos et al. Making small things Boundary layer separation Re=500 Ut/d=1 Ut/d=3 Coutanceau, Bouard finite time singularity of boundary layer equations! Why singularities? •Crucial events in the evolution of the flow-describe changes in topology, seeds for new structures Universality determines structure of flow, independent of boundary conditions Building blocks of a partial differential equation •Points where computers stop Main mathematical ingredient: self-similarity! Scale invariance: Self-similarity glycerol drop center t0 t 350 s experiment by Tomasz Kowalewski t0 t 198 s t0 t 46 s h( z, t ) t ' ( z '/ t ' ) 1/ 2 z ' ( z z0 ) / 1mm t ' (t0 t ) / t Weak shock wave power laws, self-similarity, and all that... u u u 0 t x Similarity solution u u u 0 t x t t0 t x uu tt UU 1 xxt t1 t t 1 2 00 tU UU U)U t UU U(1 1 11/ , i , i 0,1, 2, U CU 2i 2 U , =0 regular at 0 Matching condition u ( x 0) finite! as t 0 x u t U 1 x t 1 t size of critical region: x 0: u t U CU 11/ i x t t0 t t 1 infinite for t 0 ! 1 , i , i 0,1, 2, 2i 2 Approach to the similarity solution u t U , 1 x t ln t u u u 0 t x U U (1 )U UU similarity solution is fixed point! stability? Fixed point: stability ( i ) P (1 i ) P PU i PU i 0 eigenvalue problem eigenvalue: (i ) j u ( x, t ) t 1/ 2U x / t 3/ 2 only stable solution! 2i 4 j 2i 2 U U 3 Bubble breakup: beyond simple self-similarity Bubble breakup 101 surface tension-inertia h0 S.T. Thoroddsen L bubble p0 2h0 pout p0 Longuet-Higgins et al., JFM 1991 Oguz and Prosperetti, JFM 1993 t 1/ 3 2 &2 h 2 L 2 0 & & ln h& h h 0 0 0 2 h0 At h0 h0 : t '1/ 2 ln t ' 1/ 4 0.56 1/ 2 t ' ( s) Keim et al. PRL `06 Slender body ; fluid xxxxxxxxxx air z joint with M. Fontelos, D. Leppinen, J. Snoeijer. C ( )d (z ) r 2 :exp. by Burton + Taborek a( , t )d a2 2 ( z ) a ( z , t ) 2a ah 2 2 Self-similarity 2a0 / a0 a( z, t ) a0 ( ) A( ) z ln t ' a0 4 a0 ln a0 2a0 2 2 8 a0 a0 a0 a a02 a0 a0 ln 3 2 2 a0 a0 2a0 a0e a a0 g ( ) z/ Approach to the fixed point 2 (ln a0 ) a0 2 ln 2 1 linearize: u ( ), 2 v( ) define: ln(t0 t ) u u v 3 v 8v 1/ 2 1 4 cubic equation! 0.57 very slow approach! Thoroddsen Singularities: Outlook are the building blocks of PDEs form small things are seeds for new structures are scale-invariant universal link micro-and macroworld A catalogue of singularities: classify singularities …may possess complex according to dynamics close to fixed point inner structure
© Copyright 2026 Paperzz