What We Know About Linear Splines New Ideas for Relative Error Tolerances Higher Order References Some Thoughts on Guaranteed Function Approximation Satisfying Relative Error Fred J. Hickernell Department of Applied Mathematics, Illinois Institute of Technology [email protected] mypages.iit.edu/~hickernell Joint work with Yuhan Ding (IIT) and Henryk Woźniakowski (Columbia U & U Warsaw) October 16, 2014 [email protected] Function Approximation w/ Relative Error IIT, 10/16/2014 1 / 10 What We Know About Linear Splines New Ideas for Relative Error Tolerances Higher Order References Function Approximation with Adaptive Linear Splines Given data px0 , y0 q, . . . , pxn , yn q with y “ f pxi q for f : r0, 1s Ñ R, Find An pf q “ φpy0 , . . . , yn q : r0, 1s Ñ R such that kf ´ An pf qk8 is small. The linear spline is given by „ ˆ ˙ ˆ ˙ i i`1 pi ` 1 ´ nxq ` f pnx ´ iq An pf qpxq :“ f n n i i`1 for ď x ď . n n We know that kf ´ An pf qk8 ď [email protected] kf 2 k8 8n2 for f P W 2,8 Function Approximation w/ Relative Error (Clancy et al., 2014). IIT, 10/16/2014 2 / 10 What We Know About Linear Splines New Ideas for Relative Error Tolerances Higher Order References Satisfying Error Tolerances for Balls kf 2 k8 for f P W 2,8 . 8n2 Absolute error tolerances: the computational cost is bounded by f 2 8 : kf ´ An pf qk8 ď c mintn : kf ´ An pf qk8 ď εa @f P Bσ u “ σ , 8εa Bσ :“ tf P W 2,8 such that f 2 8 ď σu. Hybrid error tolerances, the computational cost is the same as for the absolute error tolerance: c σ mintn : kf ´ An pf qk8 ď maxpεa , εr kf k8 q @f P Bσ u — . εa Relative error tolerances, the computational cost is infinite: mintn : kf ´ An pf qk8 ď εr kf k8 q @f P Bσ u “ 8 [email protected] Function Approximation w/ Relative Error IIT, 10/16/2014 3 / 10 What We Know About Linear Splines New Ideas for Relative Error Tolerances Higher Order References Why a Relative Error Tolerance Doesn’t Help for Balls Let Ãn be any algorithm using n data. Let ξ ď ζ be the consecutive data sites spaced furthest apart. Define 1 “ 4pζ ´ ξq2 ` p4x ´ 2ξ ´ 2ζq2 32 `p4x ´ ξ ´ 3ζq |4x ´ ξ ´ 3ζ| ´ p4x ´ 3ξ ´ ζq |4x ´ 3ξ ´ ζ|s fbump pxq :“ Ãn pfbump q “ 0, 2 f bump 8 “ 1, kfbump k8 “ 1 pζ ´ ξq2 ě 16 16pn ` 1q2 ! ) min n : f ´ Ãn pf q ď maxpεa , εr kf k8 q @f P Bσ 8 ! ) ě min n : σfbump ´ Ãn pσfbump q ď maxpεa , εr kσfbump k8 q 8 * c " σ σ ě min n : ď εa — 2 16pn ` 1q εa [email protected] Function Approximation w/ Relative Error IIT, 10/16/2014 4 / 10 What We Know About Linear Splines New Ideas for Relative Error Tolerances Higher Order References Satisfying Error Tolerances for Cones Clancy et al. (2014) developed a way of choosing n based on function data to ensure that kf ´ An pf qk8 ď εa without knowing f 2 8 . Let Cτ :“ tf P W 2,8 : f 2 8 ď τ f 1 ´ f p1q ` f p0q8 u. By noting that for all f P W 2,8 , 2 1 f ´ f p1q ` f p0q ´ An pf q1 ´ f p1q ` f p0q ď kf k8 , 8 8 2n it may be shown that 1 2 f ď τ kAn pf q ´ f p1q ` f p0qk8 ÐÝ data-based 8 1 ´ τ {p2nq [email protected] Function Approximation w/ Relative Error IIT, 10/16/2014 5 / 10 What We Know About Linear Splines New Ideas for Relative Error Tolerances Higher Order References Satisfying Error Tolerances for Cones Clancy et al. (2014)’s algorithm chooses n to satisfy kf ´ An pf qk8 ď kf 2 k8 τ kAn pf q1 ´ f p1q ` f p0qk8 ď εa ď 8n2 4np2n ´ τ q looooooooooooooooomooooooooooooooooon data-based The computational cost for the absolute error tolerance is c mintn : kf ´ An pf qk8 ď εa @f P Cτ X Bσ u — σ . εa Hybrid error tolerances, the computational cost is unknown: mintn : kf ´ An pf qk8 ď maxpεa , εr kf k8 q @f Cτ P Bσ u —? What about relative error tolerances (εa “ 0)? [email protected] Function Approximation w/ Relative Error IIT, 10/16/2014 6 / 10 What We Know About Linear Splines New Ideas for Relative Error Tolerances Higher Order References Bounding Weaker Norms in Terms of Stronger Ones Let g “ f ´ q, and note that g 1 is continuous. Let ξ be chosen such 1 pf A 1 1 that g pξq “ g 8 . Also, define ζ “ ξ ` 1{τ or ζ “ ξ ´ 1{τ , whichever falls inside r0, 1s. It follows from integration by parts and the triangle inequality ż ξ 1 2 kgk8 ě |gpξq ´ gpζq| “ g pxq dx ζ żξ 1 ξ 2 “ g pxqpx ´ ζq ζ ´ g pxqpx ´ ζq dx ζ 1 ě g 1 pξq |ξ ´ ζ| ´ g 2 8 |ξ ´ ζ|2 2 1 1 1 1 1 ě g 8 ´ ˆ τ g 1 8 ˆ 2 “ g 1 8 τ 2 τ 2τ Thus kf k8 ě [email protected] 1 1 f 1 ´ A1 pf q1 , kf ´ A1 pf qk8 ě 8 2 8τ Function Approximation w/ Relative Error IIT, 10/16/2014 7 / 10 What We Know About Linear Splines New Ideas for Relative Error Tolerances Higher Order References Adaptive Hybrid Error Tolerances Now we choose n to satisfy kf ´ An pf qk8 ď kf 2 k8 τ kAn pf q1 ´ f p1q ` f p0qk8 ď 8n2 4np2n ´ τ q looooooooooooooooomooooooooooooooooon data-based ˆ εr kAn pf q1 ´ A1 pf q1 k8 ď max εa , 8τ ˙ ˆ ˙ εr kf 1 ´ A1 pf q1 k8 ď max εa , 8τ ď maxpεa , εr kf k8 q and get mintn : kf ´ An pf qk8 ď maxpεa , εr kf k8 q @f P Cτ X Bσ u d ˆ ˙ σ 1 , — min εa εr So either εa or εr positive gives bounded computational cost. [email protected] Function Approximation w/ Relative Error IIT, 10/16/2014 8 / 10 What We Know About Linear Splines New Ideas for Relative Error Tolerances Higher Order References Next We Consider W r`1,8 Use piecewise rth degree polynomials to approximate function. Maybe consider tensor product for d-variate functions. This idea does not work for integration problems. Why? [email protected] Function Approximation w/ Relative Error IIT, 10/16/2014 9 / 10 What We Know About Linear Splines New Ideas for Relative Error Tolerances Higher Order References References Clancy, N., Y. Ding, C. Hamilton, F. J. H., and Y. Zhang. 2014. The cost of deterministic, adaptive, automatic algorithms: Cones, not balls, J. Complexity 30, 21–45. [email protected] Function Approximation w/ Relative Error IIT, 10/16/2014 10 / 10
© Copyright 2026 Paperzz