One-dimensional oscillatory integrals The multi-dimensional case A Numerical Approach To The Steepest Descent Method Stefan Vandewalle and Daan Huybrechs K.U. Leuven, Division of Numerical and Applied Mathematics Isaac Newton Institute, Cambridge, Feb 15, 2007 Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Outline 1 One-dimensional oscillatory integrals Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples 2 The multi-dimensional case Motivating examples Theory Numerical results Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples Outline 1 One-dimensional oscillatory integrals Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples 2 The multi-dimensional case Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples Introduction The model problem Z I := b f (x)e iωg (x) dx a with... ω: frequency parameter; f : amplitude; g : oscillator f , g : smooth real functions classical quadrature deteriorates rapidly as ω increases take fixed number of points per oscillation amount of operations scales linearly with ω new oscillatory quadrature methods asymptotic, Filon, Levin, numerical steepest descent Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples One-dimensional oscillatory integrals The multi-dimensional case Introduction 2 What determines the value of the integral? 10 10 10 8 8 8 6 6 6 4 4 4 2 2 0 0 0 −2 −2 −2 −4 −4 −4 −6 2 −6 −6 −8 −8 −8 −10 −10 −10 −2 −1 0 1 2 Example: (10 − x2 )ei ω x −2 −1 0 1 2 −2 −1 0 1 2 regions where the oscillations do not cancel: ⇒ boundary points regions where the integrand is (locally) not oscillatory: ⇒ stationary points: solutions to g0 (x) = 0 Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples Introduction What is the size of the integral (asymptotically) ? |I | = O(ω −1/(r +1) ) with r : the largest order of any stationary point ξ in [a, b] g (j) (ξ) = 0, j = 1, . . . , r ; g (r +1) (ξ) 6= 0 Our goal: to find a decomposition of the integral Rb a f (x)e iωg (x) dx = F (a) + F (b) + P i F (ξi ) with ξi ∈ [a, b] the stationary points Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples The steepest descent approach Basic idea: select a new integration path assume f and g are analytic Cauchy’s theorem: the value of I does not depend on the complex path taken C a Stefan Vandewalle and Daan Huybrechs b A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples The steepest descent approach The path of ”steepest descent” (Cauchy(1827), Riemann (1863)) eiωg (x) = e iω(<g (x)+i=g (x)) = e −ω=g (x) e iω<g (x) 1 The function e iωg (x) does not oscillate if <g (x) is fixed 2 The function e iωg (x) decays exponentially fast if =g (x) > 0 ⇒ new path at point a: ha (p) such that g(ha (p)) = g(a) + p i , p ≥ 0 Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples One-dimensional oscillatory integrals The multi-dimensional case The steepest descent approach Example 1: Fourier oscillator g (x) = x (f (x) = 10 − x 2 ) g(ha (p)) = g(a) + pi ⇒ ha (p) = a + pi 30 20 C 10 0 −0.5 0 ha hb 0.5 1 11 00 00 11 a 1 0 0 1 1.5 3 2 1 0 −1 −2 −3 b Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples The steepest descent approach Decomposition: I = Z Rb a f (x)e iωg (x) = F (a) − F (b) ∞ f (ha (p))e iωg (ha (p)) ha0 (p)dp 0 Z ∞ iωg (a) =e f (ha (p))e −ωp ha0 (p)dp 0 Z ∞ iωg (a) =e f (a + pi)e −ωp idp F (a) = 0 Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples One-dimensional oscillatory integrals The multi-dimensional case A new integration path Example 2: Quadratic oscillator g (x) = x 2 (f (x) = 10 − x 2 ) p g(ha (p)) = g(a) + pi ⇒ ha (p) = ± a2 + pi 40 30 20 10 0 −10 −20 −30 −40 −50 1 0.8 0.6 1 0.4 0.8 0.2 0.6 0.4 0 0.2 −0.2 0 −0.4 −0.2 −0.4 −0.6 −0.6 −0.8 −0.8 −1 Stefan Vandewalle and Daan Huybrechs −1 A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples The steepest descent approach Decomposition: I = F1 (a) − F1 (ξ) + F2 (ξ) − F2 (b) Z 1 2 f (x)e iωx dx = −1 Z ∞ Z ∞ 0 0 f (h0,1 (p))e −ωp h0,1 (p)dp f (h−1,1 (p))e −ωp h−1,1 (p)dp − e iω 0 0 Z ∞ Z ∞ 0 −ωp 0 iω f (h1,2 (p))e −ωp h1,2 (p)dp f (h0,2 (p))e h0,2 (p)dp − e + 0 0 Numerical singularity of the path: hξ0 (p) ∼ p −1/2 , p → 0 Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples One-dimensional oscillatory integrals The multi-dimensional case The steepest descent approach Example 3: Cubic oscillator g (x) = x 3 p g(ha (p)) = g(a) + pi ⇒ ha (p) = 3 a3 + pi · e i2π/3k , k = 0, 1, 2 C i 1 0 −1 1 0 11 00 11 00 0 1 I = F1 (a) − F1 (ξ) + F2 (ξ) − F2 (b) Numerical singularity of the path: hξ0 (p) ∼ p −2/3 , p → 0 Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples One-dimensional oscillatory integrals The multi-dimensional case The steepest descent approach Example 3: Cubic oscillator g (x) = x 3 (and f (x) = 10 − x 2 ) 30 20 10 0 −10 −20 −30 −40 1 0.8 0.6 1.5 0.4 1 0.2 0 0.5 −0.2 0 −0.4 −0.5 −0.6 −1 −0.8 −1 Stefan Vandewalle and Daan Huybrechs −1.5 A Numerical Approach To The Steepest Descent Method Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples One-dimensional oscillatory integrals The multi-dimensional case The numerical steepest descent method Implementation issue 1. How to evaluate Fj ? Fj (x) = e iωg (x) ∞ Z f (hx (p))hx0 (p)e −ωp dp 0 e iωg (x) = ω Z ∞ 0 q q f (hx ( ))hx0 ( )e −q dq ω ω if exponential decay: Gauss-Laguerre (w (q) = e −q ) if singularity: generalized Gauss-Laguerre (w (q) = q −α e −q ) n or, generalized Gauss-Hermite (w (q) = e −q ) Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples One-dimensional oscillatory integrals The multi-dimensional case The numerical steepest descent method Fj (x) ≈ QF [f , g , hx ] := n e iωg (x) X wi f (hx (xi /ω))hx0 (xi /ω) ω i=1 Fj (ξ) ≈ QFr [f , g , hξ,j ] := e iωg (ξ) ω 1/(r +1) n X 0 wi f (hξ,j (xir +1 /ω)) hξ,j (xir +1 /ω) xir i=1 absolute error: O(ω (−2n−1)/(r +1) ) relative error: O(ω −2n/(r +1) ) Gaussian convergence rate 2n as a function of 1/ω (r = 0) Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples The numerical steepest descent method Example: R1 1 iωx dx 0 1+x e I ≈ QF [f , g , ha ] − QF [f , g , hb ] ω\n 10 20 40 80 rate 1 1.0E − 3 1.2E − 4 1.7E − 5 2.0E − 6 3.1(3) 2 3.1E − 5 1.1E − 6 3.9E − 8 1.2E − 9 5.0(5) 3 1.9E − 6 2.3E − 8 2.1E − 10 1.7E − 12 6.9(7) Stefan Vandewalle and Daan Huybrechs 4 1.7E − 7 7.5E − 10 2.0E − 12 4.2E − 15 8.9(9) 5 2.1E − 8 3.2E − 11 2.8E − 14 1.6E − 17 10.8(11) A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples The numerical steepest descent method Example: R1 1 iωx 3 dx −1 x+2 e I ≈ Q[f , g , ha ] − QF2 [f , g , hξ,1 ] + QF2 [f , g , hξ,2 ] − QF [f , g , hb ] ω\n 40 80 160 320 rate 1 1.5E − 4 5.8E − 5 2.3E − 5 9.1E − 6 1.3 (3/3) 2 2.4E − 6 7.1E − 7 2.1E − 7 6.7E − 8 1.7 (5/3) 3 1.3E − 8 2.3E − 9 4.2E − 10 8.1E − 11 2.4 (7/3) Stefan Vandewalle and Daan Huybrechs 4 6.9E − 11 6.4E − 12 6.1E − 13 5.8E − 14 3.4 (9/3) 5 7.6E − 13 4.7E − 14 3.1E − 15 2.1E − 16 3.9 (11/3) A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples The numerical steepest descent method Implementation issue 2. How to determine the path ? if inverse of g is available: ha (p) = g −1 (g (a) + pi) otherwise...compute ha (xi /ω) and ha0 (xi /ω) numerically Apply Newton-Raphson iteration to g (ha (p)) − g (a) − pi = 0 initial guess by truncated Taylor series of g only very few iterations necessary Derivative: g (ha (p)) − g (a) − pi = 0 ⇒ g 0 (ha (p))ha0 (p) − i = 0 Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples The numerical steepest descent method Example: R1 1 iω(x 2 +x+1)1/3 dx 0 1+x e I ≈ QF [f , g , ha ] − QF [f , g , hb ] with 2nd order Taylor path ω\n 20 40 80 160 320 rate 1 1.4E − 2 2.5E − 3 3.8E − 4 5.2E − 5 6.7E − 6 3.0 2 2.7E − 3 2.6E − 4 1.8E − 5 1.1E − 6 6.8E − 8 4.0 3 7.4E − 4 4.6E − 5 1.7E − 6 4.0E − 8 7.7E − 10 5.7 Stefan Vandewalle and Daan Huybrechs 4 2.4E − 4 1.0E − 5 2.0E − 7 2.1E − 9 1.6E − 11 7.0 5 8.9E − 5 2.5E − 6 2.9E − 8 1.5E − 10 4.4E − 13 8.4 A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples The numerical steepest descent method Example: R1 1 iω(x 2 +x+1)1/3 dx 0 1+x e I ≈ QF [f , g , ha ] − QF [f , g , hb ] with 2nd order Taylor path, followed by 1 to 4 Newton iteration steps ω\n 20 40 80 160 320 640 rate 1 1.1E − 2 2.1E − 3 3.3E − 4 4.5E − 5 5.9E − 6 7.2E − 7 3.0 2 2.4E − 3 2.4E − 4 1.5E − 5 6.1E − 7 2.1E − 8 6.7E − 10 5.0 3 7.4E − 4 4.4E − 5 1.2E − 6 1.8E − 8 1.8E − 10 1.5E − 12 6.9 Stefan Vandewalle and Daan Huybrechs 4 2.5E − 4 1.0E − 5 1.5E − 7 8.7E − 10 2.7E − 12 6.3E − 15 8.8 5 7.5E − 5 2.4E − 6 2.3E − 8 6.2E − 11 6.2E − 14 4.3E − 17 10.5 A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples The numerical steepest descent method Relation to Levin type methods Levin method: write I = F (b)e iωg (b) − F (a)e iωg (a) with F (x) the non-oscillatory solution to F 0 (x) + iωg 0 (x)F (x) = f (x) It can be verified that the exact solution is given by Z ∞ f (hx (p))hx0 (p)e −ωp dp F (x) = − 0 Numerical steepest descent: evaluate the analytical solution to the Levin ODE numerically ! Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples A Filon type quadrature rule The Generalized Filon’s method (Iserles and Nørsett) Idea: approximate f globally on [a, b] by Hermite interpolation P Assume: f (x) ≈ N i=1 ci φi (x) Rb P iωg (x) dx Then: I ≈ N i=1 wi ci with wi = a φi (x)e Iserles and Nørsett: convergence O(ω −s−1/(r +1) ) interpolate derivatives of order 0 . . . s − 1 at corner points interpolate derivatives of order 0 . . . (s − 1)(r + 1) at stationary points computation of moments, e.g., by numerical steepest descent Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples A Filon type quadrature rule Localized Filon’s method Idea: apply local Hermite (or Taylor) approximation of f for each integral contribution Fj Fj [f ](x) := e iωg (x) Define: f (z) ≈ From: We have: with: 0 f (hx (p))hx0 (p)e −ωp dp (i) (x) (z−x) i! i Pdj (i) (x) Pdj i=0 f Fj [f ](x) ≈ R∞ i=0 wi,j f i wi,j := Fj [ (z−x) i! ](x) Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples One-dimensional oscillatory integrals The multi-dimensional case A Filon type quadrature rule A “classical” quadrature rule I ≈ Pl j=0 Pdj i=0 wi,j f (i) (x j) Convergence result: Let dj = s − 1 at a non-stationary point, and let dj = s(r + 1) − 1 at a stationary point then our rule has an absolute error of O(ω −s−1/(r +1) ) and a relative error of O(ω −s ), asymptotically for large ω. Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples One-dimensional oscillatory integrals The multi-dimensional case Two more examples R1 1 iω(x−1/2)2 dx 0 1+x 2 e Example 1: 0 10 Filon−type 3 weights localized Filon−type numerical steepest descent Filon−type 5 weights −2 10 Filon (3 evals): O(ω −3/2 ) Local Filon (3 evals): O(ω −3/2 ) −4 10 −6 NSD (4 evals): O(ω −5/2 ) −8 Filon (5 evals): O(ω −2 ) 10 10 −10 10 1 10 2 10 3 ω 10 4 10 Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples Two more examples Example 2: The Hankel oscillator Z IH [f ] := b f (x)Hν(1) (ωg1 (x))e iωg2 (x) dx, a For large arguments r 2 i(z− 1 νπ−1/4π) 2 Hν(1) (z) ∼ e , −π < argz < 2π, |z| → ∞. πz Approximate oscillator: g (x) = g1 (x) + g2 (x) P P l H f (j) (x ). Quadrature rule: IH [f ] ≈ QH [f ] := Ll=0 dj=0 wl,j l Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Introduction The steepest descent approach The numerical steepest descent method A Filon type quadrature rule Two more examples Two more examples R1 0 (1) cos(x − 1)H0 (ωx)e iω(x 2 +x 3 −x) dx. Two quadrature points: x = 0: a singularity and a stationary point of order 1 x = 1: a regular endpoint ω \ (d0 , d1 ) 100 200 400 800 rate (0, 0) 1.2E − 3 5.1E − 4 2.2E − 4 9.3E − 5 1.23 (1.25) (1, 0) 2.8E − 5 8.6E − 6 2.6E − 6 7.8.1E − 7 1.73 (1.75) Stefan Vandewalle and Daan Huybrechs (2, 0) 1.3E − 6 2.9E − 7 6.4E − 8 1.4E − 8 2.20 (2.25) (3, 1) 2.6E − 8 4.1E − 9 6.2E − 10 9.7E − 11 2.68 (2.75) A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results Outline 1 One-dimensional oscillatory integrals 2 The multi-dimensional case Motivating examples Theory Numerical results Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results Multivariate oscillatory integrals Model form Z In := f (x)e iωg (x) dx S Contributing points? corner points critical points: ∇g = 0 resonance points: ∇g ⊥ ∂S Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method Motivating examples Theory Numerical results One-dimensional oscillatory integrals The multi-dimensional case Multivariate oscillatory integrals Main approach: repeated one-dimensional integration deform onto path of steepest descent for inner variable Z b(x) f (x, y )e iωg (x,y ) dy I1 (x) := a(x) = F (x, a(x)) − F (x, b(x)) the function F is evaluated only in points on the boundary F (x, a(x)) = e iωg (x,a(x)) Z ∞ f (x, u(x, p)) 0 ∂u(x, p) −ωp e dp ∂p oscillator of F (x, a(x)) is exactly known: g (x, a(x)) ! Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results Example 1 Rectangular domain in two dimensions Z b Z I := a d f (x, y )e iω(x+y ) dy dx c Step 1: deform onto path of steepest descent for y Z I := b G (x, c)e iω(x+c) − G (x, d)e iω(x+d) dx a Smooth function G is given by Z ∞ G (x, y ) = f (x, y + ip)ie −ωp dp 0 Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results Example 1 (continued) Rectangular domain in two dimensions b Z G (x, c)e iω(x+c) = G̃ (a, c)e iω(a+c) − G̃ (b, c)e iω(b+c) a Total decomposition I := F (a, c) − F (b, c) − F (a, d) + F (b, d) Contributions are given by non-oscillatory double integrals with exponential decay in both variables Z ∞Z ∞ iω(x+y ) F (x, y ) = e f (x + ip, y + iq)i 2 e −ω(p+q) dq dp 0 0 Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results Example 1 (continued) Rectangular domain in two dimensions b Z Z I := a d f (x, y )e iω(x+y ) dy dx c (a,d) (b,d) (a,c) (b,c) I := F (a, c) − F (b, c) − F (a, d) + F (b, d) Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results Example 2: smooth boundaries 1. A two-dimensional simplex Z b Z I := a x f (x, y )e iω(x+y ) dy dx a Step 1: deform onto path of steepest descent for y Z I := b G (x, a)e iω(x+a) − G (x, x)e iω(x+x) dx a oscillators are different Result: contributions of the three corner points Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results Example 2: smooth boundaries (continued) 2. More general boundaries Z b Z d(x) I := Z a b = f (x, y )e iω(x+y ) dy dx c(x) G (x, c(x))e iω(x+c(x)) − G (x, d(x))e iω(x+d(x)) dx a new oscillator x + c(x) may have stationary points! resonance points: stationary point of oscillator g (x, c(x)) evaluated along the boundary happens when ∇g ⊥ ∂S Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results Example 2: smooth boundaries (continued) Fourier integral on a circle Z 1 √ Z 1−x 2 f (x, y )e iω(x+y ) dy dx −1 − √ √ √ ! √ ! 2 2 2 2 =F − −F ,− , 2 2 2 2 I := √ 1−x 2 Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results Example 3: critical points A rectangular domain with a critical point Z b Z I := a d f (x, y )e iω(x 2 −xy −y 2 ) dy dx c g (x, y ) = x 2 − xy − y 2 ∇g (0, 0) = 0 ∂g ∂x (x, y ) ∂g ∂y (x, y ) = 0 ⇐⇒ x = y /2 = 0 ⇐⇒ y = −x/2 Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results Example 3: critical points (continued) A rectangular domain with a critical point (a,d) (d/2,d) (b,d) (a,−a/2) (0,0) (b,−b/2) (a,c) (c/2,c) Stefan Vandewalle and Daan Huybrechs (b,c) A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results Example 3: critical points (continued) A rectangular domain with a critical point Step 1: deform onto path of steepest descent for y Z I := b G1 (x, c)e iωg (x,c) a − G1 (x, −x/2)e iωg (x,−x/2) + G2 (x, −x/2)e iωg (x,−x/2) − G2 (x, d)e iωg (x,d) dx g11 (x) := g (x, c) = x 2 − cx − c 2 g12 (x) := g (x, −x/2) = 54 x 2 Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results Example 3: critical points (continued) A rectangular domain with a critical point Step 2: deform onto path of steepest descent for x I = F111 (a, c) − F111 (c/2, c) + F112 (c/2, c) − F112 (b, c) − F121 (a, −a/2) + F121 (0, 0) − F122 (0, 0) + F122 (b, −b/2) + F211 (a, −a/2) − F211 (0, 0) + F212 (0, 0) − F212 (b, −b/2) − F221 (a, d) + F221 (d/2, d) − F222 (d/2, d) + F222 (b, d). Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results What can be proved Theorem 4.2 (Huybrechs and Vandewalle, 2006) Z X In := f (x)e iωg (x) dx = sλ Fλ0 (xλ ) + O(e −ωd0 ), S size(λ)=2n Conditions are: analyticity of f , g in a ’complex neighbourhood’ of S piecewise analytic parameterisation of S stationary points may be degenerate two additional conditions exclude special cases Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results Additional conditions 1. Exclude curves of resonance points and critical points If for some λ we have ∂gλ (x, y ) ≡ 0, ∂y then the integral in y is not oscillatory. Solution: integration in y can be performed numerically on the real line Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results Additional conditions (continued) Example curve of resonance points on circular boundary R 2 2 Example: x 2 +y 2 <=1 f (x, y )e iω(x +y ) dV Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results Additional conditions (continued) 2. Each lower-dimensional integral in x is either: an integral along a curve of stationary points (of the same order) in y an integral along a curve that has no stationary point in y In particular: this excludes critical points on the boundary Reason: existence of complex stationary points in y that may (or may not) be arbitrarily close to the real line Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results Additional conditions (continued) Example: integral on the part in the upper right halfplane (a,d) (d/2,d) (b,d) (a,−a/2) (0,0) (b,−b/2) (a,c) (c/2,c) Stefan Vandewalle and Daan Huybrechs (b,c) A Numerical Approach To The Steepest Descent Method Motivating examples Theory Numerical results One-dimensional oscillatory integrals The multi-dimensional case Example 1: 3D balls and ellipsoids Sphere with Fourier oscillator No stationary points, two boundary points −1 q 1−x 2 1 q − 1−x 2 1 Z 1 Z I3 = q Z − 1−x 2 −x 2 1 2 q 1−x 2 −x 2 1 2 2 x +x x iω(x1 +x2 +x3 ) e 1 2 3 (3x3 + cos(x2 ))e dx3 dx2 dx1 . Contributing points: ∇g ⊥ ∂S √ √ √ √ √ √ (− 3/3, − 3/3, − 3/3) and ( 3/3, 3/3, 3/3) Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method Motivating examples Theory Numerical results One-dimensional oscillatory integrals The multi-dimensional case Example 1: 3D balls and ellipsoids Cubature rule I3 ≈ 2 XXX X i=1 j k l wi,j,k,l ∂ j+k+l f ∂x1j ∂x2k ∂x3l (xi ) Convergence ω\d 100 200 400 800 1600 rate 0 2.6e − 5 3.2e − 6 3.9e − 7 5.0e − 8 6.3e − 9 3.0 (2.5) Stefan Vandewalle and Daan Huybrechs 1 2.4e − 6 3.6e − 7 5.2e − 8 3.8e − 9 5.2e − 10 2.9 (3.0) 2 1.2e − 7 8.0e − 9 5.5e − 10 2.7e − 11 1.7e − 12 4.0 (3.5) A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results Example 1: 3D balls and ellipsoids Generalisation to an ellipsoid Z 1 2 I3 := k (n(x)2 − 1)e iω a·x dx3 dx2 dx1 . E 4π length scales R1 , R2 , R3 along X , Y and Z axis oscillator: a · x = a1 x1 + a2 x2 + a3 x3 two resonance points application: scattering of light due to propagation in an object with refractive index n(x) (Sigal Trattner) Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results Example 1: an ellipsoid (continued) Absolute errors R1 = 1, R2 = 2, R3 = 1 tensor-product Gauss-Laguerre with m points per dimension ω \ m (4m3 ) 1 2 4 8 16 rate 1 (4) 2.2e − 2 6.1e − 3 1.1e − 3 6.7e − 6 1.6e − 6 2.0 2 (32) 4.9e − 3 7.5e − 5 6.0e − 7 3.8e − 8 2.4e − 9 4.0 Stefan Vandewalle and Daan Huybrechs 3 (108) 3.8e − 3 7.8e − 5 5.9e − 7 6.6e − 11 1.1e − 12 6.0 4 (256) 1.7e − 2 6.7e − 4 5.9e − 7 3.5e − 13 1.5e − 14 4.6 A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results Example 2: a degenerate stationary point A rectangular domain with a degenerate stationary point Z 1 Z 1 I2 := −1 −1 1 3 3 e iω(x +y ) dy dx, 3+x +y (a,d) (b,d) (a,c) (b,c) Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results Example 2 (continued) Localised Filon-type quadrature rule nine quadrature points use d function values and derivatives at each point ω\d 50 100 200 400 800 rate 0 5.3e − 03 2.7e − 03 1.3e − 03 6.7e − 04 3.4e − 04 0.98 (1.0) 1 2.5e − 04 9.9e − 05 3.9e − 05 1.6e − 05 6.1e − 06 1.34 (1.33) Stefan Vandewalle and Daan Huybrechs 2 2.9e − 05 9.0e − 06 2.8e − 06 8.9e − 07 2.9e − 07 1.63 (1.66) A Numerical Approach To The Steepest Descent Method One-dimensional oscillatory integrals The multi-dimensional case Motivating examples Theory Numerical results Concluding remarks 1 One-dimensional integrals two types of points: stationary points and endpoints integration along the path of steepest descent construction of Filon-type quadrature rules 2 Multi-dimensional integrals three types of points: corners, critical points, resonance points integration on a manifold of steepest descent construction of Filon-type cubature rules 3 Problems not treated here functions with complex poles or stationary points oscillatory integral equations Stefan Vandewalle and Daan Huybrechs A Numerical Approach To The Steepest Descent Method
© Copyright 2026 Paperzz