디지털통신 주요식 정리 유상조 교수 (인하대학교 정보통신대학원) Chapter 2 Signal and Linear System Analysis 2.2 Signal classification E lim - energy T T T 2 xt dt xt dt 2 2 1 T x t dt T 2T T - energy signal 0 E , P 0 - power P lim - power signal 0 P , E 2.3 Generalized Fourier series xa t n1 X nn t , t 0 t t 0 T N - approximation of x(t) : X n :coefficient, n t = linearly independent basis function cn t 0 T t0 n t n * t dt 2 - approximation error (integral squared error ISE) N xt x z t dt T Xn - to minimizes the ISE - ISE=0를 만족하는 (즉 x t 1 cn xt t dt * n T xt xa t n1 X nn t ), N (complete orthogonal function) 구성 조건 T xt dt n 1 cn X n N 2 2 Parseval’s theorem 2.4 Fourier series - complete exponential Fourier series xt n X n e jnw0t where X n 1 T0 t 0 t t 0 T0 t 0 T0 t0 xt e jnw0t dt 2.5 Fourier transform X f x e j 2f d , xt X f e j 2ft df - energy E xt dt 2 X f df 2 (Rayleigh’s energy theorem) - energy spectral density (units of energy density) G f X f 2 xt x1 t x2 t x1 t x2 t d - convolution 2.6 Power spectral density and correlation 1 T 2T P lim 2 xt dt S f df T T ( S(f): power spectral density) - time average autocorrelation function for energy signal x x lim x x d T T T - time average autocorrelation function for power signal R xt xt lim 1 T 2T xt xt dt T T Wiener-Khinchine theorem S f R e j 2f d , R S f e j 2f df 2.7 Signal and linear systems - linear system yt 1 x1 t 2 x2 t 1x1 t 2 x2 t 1 y1 t 2 y2 t - time invariant system yt t 0 xt t 0 - impulse response ht t - output of the system Fourier transform - Gy f Y f yt x ht d Y f H f X f 2 H f X f 2 H f 2 G x f for energy signal - Sy f H f 2 Sx f for power signal - distortionless transmission: 입력신호의 전 주파수 요소에 대해 동일한 감쇄와 지연 을 겪는 시스템 yt H 0 xt t 0 H f H 0 e j 2ft0 distortionless system 조건 2.8 Sampling theory - 만약 신호 x(t)의 주파수가 f=W 이하로 제한되었을 때, 원 신호를 Ts<1/2W로 샘플링 된 신호를 B (W<B<fs-W)의 대역을 갖는 LPF를 통과 시킴으로써 원 신호를 완벽히 재생할 수 있다. 2.9 Hilbert transform - 원 신호의 모든 주파수 성분을 1 2 만큼 phase-shift 시키는 변환 1, f 0 H f j s gn f , s gn f 0, f 0 1, f 0 2.10 Discrete Fourier transform X k n 0 xn e j 2nk / N , k 0,1,, N 1 N 1 xn 1 N 1 X k e j 2nk / N , k 0,1,, N 1 k 0 N Chapter 3 Basic Modulation Techniques 3.1 Linear modulation 1) Double-sideband modulation (DSB) ** modulator xc t Ac mt cos wc t Xcf : m(t)=message signal 1 1 Ac M f f c Ac M f f c 2 2 ** demodulator : *2coswct LPF d t 2 Ac mt c o swc t c o swc t Ac mt Ac mt c o s2wc t d ** power 관점에서 효율적이나, 복조 시 modulation시의 carrier 와 동일한 phase를 갖는 2coswct 가 필요 (구현에서는 수신신호의 square를 수행함으로써 가능) 2) Amplitude modulation (AM) ** modulation xc t Ac 1 amn t cos wc t , mn(t)= m(t)의 최소값이 -1 이 되도록 정규화 a=modulation index 3) Single sideband modulation (SSB) : 한쪽의 sideband를 전송 전에 제거 xc t 1 1 Ac mt cos wc t Ac mˆ t cos wc t 2 2 3.2 Angle modulation 1) general form xc t Ac c o swc t t instantaneous phase : i t wc t t instantaneous frequency wi t d i d wc dt dt 2) phase modulation (PM) t k p mt , kp= deviation constant 3) frequency modulation (FM) t d 2f d mt , t 2f d m d , fd= frequency deviation constant 0 dt - angle modulation power x c2 t 1 2 Ac 2 - FM의 demodulation: 수신신호의 미분 후 envelope 검출기 통과 - PM의 demodulation: FM 수신기에 적분기를 하나 더 달면됨 Chapter 4 Probability and Random Variables 4.1 Probability - Bayes’ rule P B | A PB P A | B P A 4.2 Random variables Px1 X x2 FX x2 FX x1 f X x dx x2 x1 f X x dx Px dx X x FX ,Y P X x, Y y - independent random variables FXY x, y FX x FY y , f X ,Y x, y f X x f Y y - not independent random variables f X ,Y x, y f X x f Y | X y | x 4.3 Statistical average X EX j 1 x j Pj discrete random variable M EX xf X x dx continuous random variable X2 E X E X 2 EX 2 E 2 X XY XY EXY EX EY XY XY variance correlation coefficient 4.4 Useful pdf - Binomial distribution n PK k Pn k p k q n k k - Geometric distribution Pk pq k 1 - Gaussian distribution nm X , X 1 2 X 2 e xp x m X / 2 X 2 2 Chapter 5 Random Signal and Noise 5.1 Corelation and power sepectral density RX EX t X t S X f R e 2f d Fourier transform pairs 5.2 Linear systems and random process 2 S y f H f S x f , R y H f S x f e j 2f df 2 Rxy hu R u du h Rx S xy f H f S x f
© Copyright 2026 Paperzz