SUBSECRETARÍA DE INDUSTRIA, ENERGÍA Y TURISMO SECRETARÍA GENERAL TÉCNICA Subdirección General de Estudios, Análisis y Planes de Actuación A dynamic factor model to assess the real time state of the Spanish industry using confidence indicators Ángel Cuevas Research and Analysis Unit Ministry of Industry, Energy and Tourism of Spain (MINETURprevMITYC) [email protected] EU workshop on business and consumer surveys (BCS) Brussels, 15th-16th November 2012 BACKGROUND Interest in improving the measurement of the state of the industrial business cycle for purposes of: Anticipation of adverse situations. Evaluation and implementation of economic and industrial policies. Improvement in databases of economic indicators. Advances in econometric methods for time series. Development of computer tools. Stock and Watson (1991, 2002), Gayer and Genet (2006), Angelini et al. (2008) Camacho and Perez-Quirós (2009), Cuevas and Quilis (2011). Objective: Multivariate modeling of a broad and representative set of monthly indicators of industrial activity, with the purpose of prediction, analysis and monitoring and forecasting of macroeconomic aggregates (industrial GVA). 2 Inputs Preprocessing Dynamic factor model {Treatment unbalanced panel} Applications 3 Selection of indicators • High frequency indicators (monthly). • Must provide a synthetic measure of the Spanish industrial activity. • They must be available promptly. • They must be correlated with the reference series: Industrial Production Index (IPI) 4 Selection of indicators • Prove the correlation with the IPI: Cross-correlation with the growth signal of SAC series. Cyclical Analysis: Butterworth (band-pass) + classification of the turning points (Bry-Boschan). 5 Selection of indicators Ministry of Industry / EC Markit Economics General Directorate of Traffic Spanish Electricity Network Ministry of Industry Start date 1990 01 1998 05 1990 01 1990 01 1994 01 Release date t-2 days t+1 day t+1 day t+1 day t+25 days balance of replies balance of replies units million Kw/h units Ministry of Industry 1994 01 t+25 days units Petroleum Products Corporation 1990 01 t+30 days thousand of metric tons Variable Source Industrial Confidence Indicator PMI Industry Car Registrations Electricity Consumption Manufacture of cars Manufacture of commercial and industrial vehicles Consumption of diesel Industrial Production Index Large Companies Sales. Industry Turnover Index in Industry New Orders Index in Industry National Statistical Institute 1990 01 t+35 days Tax State Agency National Statistical Institute National Statistical Institute 1995 01 2002 01 2002 01 t+35 days t+50 days t+50 days Unit volume index deflated value index deflated value index deflated value index Leading indicators are highlighted in yellow 6 Leading indicators 0.90 0.80 Cross-correlation: y-o-y rates/differences 0.72 0.77 0.79 0.81 0.80 0.78 0.75 Industrial Confidence Indicator 0.68 0.70 0.60 0.60 0.52 0.50 0.43 0.40 0.31 0.30 0.22 0.20 0.10 0.00 6 0.70 0.65 0.65 0.64 0.62 0.60 0.70 0.58 PMI Industry 0.52 0.50 5 4 3 0.65 0.65 0.64 0.65 2 0.62 0.60 1 0.30 0.20 -3 -4 -5 -6 0.54 0.45 0.39 0.40 0.21 -2 Car registrations 0.50 0.34 -1 0.58 0.44 0.40 0 0.31 0.10 0.30 0.10 0.22 0.00 0.20 0.13 -0.02 -0.10 0.10 -0.13 -0.20 -0.22 -0.30 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 0.04 0.00 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 7 Leading indicators 0.40 Cross-correlation: m-o-m rates/differences 0.35 0.30 0.20 Industrial Confidence Indicator 0.24 0.10 0.10 0.20 0.18 0.17 0.17 0.12 0.13 0.11 0.09 0.04 0.00 -0.10 -0.20 -0.19 -0.30 6 4 3 2 1 0 -1 -2 -3 -4 -5 -6 0.40 0.40 PMI Industry 0.30 0.20 5 0.10 0.18 0.16 0.20 0.11 0.10 0.05 0.14 0.10 0.05 0.08 0.08 0.07 0.06 0.08 0.01 0.00 0.00 -0.10 -0.10 -0.08 -0.13 -0.20 Car registrations 0.22 0.23 0.22 0.19 0.27 0.30 -0.02 -0.03 -0.05 -0.07 -0.08 -0.20 -0.18 -0.30 -0.30 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 8 Leading indicators 0.80 0.69 0.39 0.37 0.40 0.20 Industrial Confidence Indicator 0.54 0.60 Cross-correlation: q-o-q rates/differences (quarterly frequency) 0.68 0.18 0.11 0.00 -0.20 -0.16 -0.28 -0.40 4 2 1 0 0.44 0.43 -1 -2 -3 -4 0.80 0.80 PMI Industry 0.60 0.39 0.40 0.45 0.60 0.45 0.38 0.40 0.22 0.20 3 0.20 0.09 0.19 Car registrations 0.24 0.16 0.00 0.00 -0.04 -0.05 -0.20 -0.20 -0.25 -0.40 4 3 2 1 0 -1 -2 -0.22 -0.31 -3 -0.35 -4 -0.17 -0.40 4 3 2 1 0 -1 -2 -3 -4 9 Leading indicators Cyclical Analysis: ICI 10 Leading indicators Cyclical Analysis: Car registrations 11 Leading indicators Cyclical Analysis: PMI 12 Inputs Preprocessing Dynamic factor model {Treatment unbalanced panel} Applications 13 Preprocessing • The series are adjusted for seasonal and calendar effects (if such effects are significant). • Logarithmically transformed. • Regular differences. s ac i,t zi,t (1 B) log(x ) s ac i,t x s ac i,t 1 x s ac i,t 1 x s ac i,t (Soft) zi,t (1 B)x • The above variables are standardized. 14 Inputs Preprocessing Dynamic factor model {Treatment unbalanced panel} Applications 15 at Common dynamic (B) ft Idiosyncratic dynamics z1,t z2,t z3,t u1,t u2,t u3,t 1(B) 2(B) e1,t e2,t Static factor model 3(B) e3,t 16 Dynamic factor model: complete representation Zt Lft Ut 0 ft at f (B) 0 U(B) Ut et 0 1 0 at e ~ iid N , 0 Q e t 0 17 Factor model: dynamics 2 3 f (B) 1 1B 2B 3B 4B U (B) diag 1 i,1B i 1..k Qe diag 4 i 1..k i,i 18 Factor model: estimation (Nº. factors) SCREE PLOT 4 3.5 3 Eigenvalue 2.5 2 1.5 1 0.5 0 0 2 4 6 Number 8 10 12 19 Dynamic factor model: estimation (f) • The common factor and its standard deviation are estimated by Kalman filter, adjusting the dynamic factor model to state space representation. Z t HS t Vt S t FS t 1 Wt 0 R 0 Vt ~ iidN , Wt 0 0 Q [H(L), F( F , U ), R 0, Q()] 20 Dynamic factor model: loadings Turnover Index in Industry Industrial Production Index New Orders Index in Industry Large Companies Sales. Industry Consumption of diesel Manufacture of commercial and industrial vehicles PMI Industry Electricity Consumption Manufacture of cars Industrial Confidence Indicator Car Registrations Loadings 0,90 0,83 0,83 0,73 0,71 Lead/Lag 0 0 0 0 0 0,43 0 0,39 0,36 0,36 0,31 0,24 3 0 0 3 3 21 Inputs Preprocessing Dynamic factor model {Treatment unbalanced panel} Applications 22 Estimation with an unbalanced panel 1 ... ... ... ... ... ... ... ... Observation 1 2 3 T1 T2 2 3 Indicator 4 5 6 7 8 Longitudinal panel: initial estimate of the common factor Cross-section panel Dark grey: observed Light grey: non observed 23 Estimation with an unbalanced panel t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 Indicator 4 5 6 7 8 Factor Static Dynamic 24 Estimation with an unbalanced panel t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 BALANCED PANEL: Using OLS (Stock-Watson) Indicator 1 2 3 4 5 6 7 8 Factor Static Dynamic 25 Estimation with an unbalanced panel t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 BALANCED PANEL: Using Kalman Filter Indicator 1 2 3 4 5 6 7 8 Factor Static Dynamic 26 Estimation with an unbalanced panel t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 REFINED BALANCED PANEL (KF). Repeat until convergence is achieved. Indicator Factor 1 2 3 4 5 6 7 8 Static Dynamic 27 Estimation with an unbalanced panel t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 FINAL BALANCED PANEL AND FORECASTS: Using Kalman Filter. Indicator Factor 1 2 3 4 5 6 7 8 Static Dynamic 28 Inputs Preprocessing Dynamic factor model {Treatment unbalanced panel} Applications 29 199101 199104 199203 199302 199401 199404 199503 199602 199701 199704 199803 199902 200001 200004 200103 200202 200301 200304 200403 200502 200601 200604 200703 200802 200901 200904 201003 201102 201201 Industrial GVA and dynamic factor IGVA and Factor. y-o-y rates. Quarterly frequency 10 5 0 -5 -10 IGVA Factor -15 30 Industrial GVA and dynamic factor 0.90 0.80 0.80 0.78 0.70 0.70 0.62 0.60 0.54 0.50 Cross-correlation: y-o-y rates 0.40 0.41 0.36 0.30 0.24 0.20 0.09 0.10 0.00 4 3 2 1 0 -1 -2 -3 0.08 0.07 -2 -3 -4 0.70 0.60 Cross-correlation: q-o-q rates 0.55 0.57 0.50 0.39 0.40 0.30 0.30 0.24 0.20 0.10 0.09 0.04 0.00 4 3 2 1 0 -1 -4 31 Forecasting and interpolation of industrial GVA Monthly IGVA y-o-y rate 6 5 4 3 2 1 0 -1 -2 -3 -4 Benchmarking method: Chow-Lin, Fernández Real time estimation: y-o-y rate IGVA 2012 Q-I -2.4 -2.6 3.1 3.5 2.5 2.7 2.3 2.7 1.7 3.4 2.3 0.5 -0.9 -0.7 -2.5 -3.3 -3.1 -3.2 -3.2 Forecasting performance, 2003:Q1 – 2012:Q1 -3,101% RMSE -2.8 -3.0 -2.8 ARIMA 2,755 -3.4 DFM + Bench. 1,461 -3.6 ISI (MEC) + Bench. 1,707 -3.2 32 Markov swithching model 33 Conclusions It has developed a coincident indicator of Spanish industrial activity, trying to exploit all possible information from various related monthly indicators. The presence of leading indicators is critical in order to project the factor and anticipate the evolution of industrial activity in real time. These leading indicators are ICI, PMI and car registrations and they have a lead of three months. The methodology allows not only to estimate this factor, but also get individual predictions in a multivariate context of all the indicators included in the model. With the estimated factor there are various options for use: Perform a real time prediction of IGVA Translate its variations into probabilities of recession This work can be extended in many directions: transfer functions, more sophisticated Markov switching models, etc. 34 References Angelini, E., Camba-Méndez, G., Giannone, D., Reichlin, L., Runstler, G (2008) “Short-term forecasts of Euro area GDP growth”. CEPR Discussion Paper n. 6746. Camacho M, Pérez-Quirós G (2010) “Introducing the EuroSTING: Short Term Indicator of Euro Area Growth. Journal of Applied Econometrics. Cuevas, A. & Quilis, E.M. (2011) “A factor analysis for the Spanish economy”. SERIEs Journal of the Spanish Economic Association. Gayer, C. & Genet, J.(2006) “Using Factor Models to Construct Composite Indicators from BCS Data - A Comparison with European Commission Confidence Indicators”. Economic Papers N.240, European Commission. Kim, C.-J. & Nelson, C.R. (1999) “State-Space Models with Regime Switching”, The MIT Press. 35 SUBSECRETARÍA DE INDUSTRIA, ENERGÍA Y TURISMO SECRETARÍA GENERAL TÉCNICA Subdirección General de Estudios, Análisis y Planes de Actuación Thanks for your attention Ángel Cuevas Research and Analysis Unit Ministry of Industry, Energy and Tourism of Spain (MINETUR) [email protected] EU workshop on business and consumer surveys (BCS) Brussels, 15th-16th November 2012
© Copyright 2026 Paperzz