Physical Fluctuomatics 7th~10th Belief propagation Appendix Kazuyuki Tanaka Graduate School of Information Sciences, Tohoku University [email protected] http://www.smapip.is.tohoku.ac.jp/~kazu/ Physics Fluctuomatics (Tohoku University) 1 Textbooks Kazuyuki Tanaka: Introduction of Image Processing by Probabilistic Models, Morikita Publishing Co., Ltd., 2006 (in Japanese) , Chapter 5. References H. Nishimori: Statistical Physics of Spin Glasses and Information Processing, ---An Introduction, Oxford University Press, 2001. H. Nishimori, G. Ortiz: Elements of Phase Transitions and Critical Phenomena, Oxford University Press, 2011. M. Mezard, A. Montanari: Information, Physics, and Computation, Oxford University Press, 2010. Physics Fluctuomatics (Tohoku University) 2 Probabilistic Model for Ferromagnetic Materials P(1,1) P(1. 1) p P(1,1) P(1. 1) 1 p 2 p p p a1 1 a2 1 p 1 1 1 1 1 P(1. 1) P(1. 1) P(1,1) P(1,1) Physics Fluctuomatics (Tohoku University) 3 Probabilistic Model for Ferromagnetic Materials p p a1 1 a2 1 1 1 1 1 1 # of Blue Lines 1 P(a ) p ( p) # of Red Lines 2 > = > Prior probability prefers to the configuration with the least number of red lines. Physics Fluctuomatics (Tohoku University) 4 More is different in Probabilistic Model for Ferromagnetic Materials p Sampling by Markov Chain Monte Carlo method p p p 1 p 2 1 p 2 Small p Large p Disordered State Ordered State More is different. Critical Point (Large fluctuation) Physics Fluctuomatics (Tohoku University) 5 Fundamental Probabilistic Models for Magnetic Materials exp( ha) P(a) exp( ha) a 1 e h h0 e +1 h 1 a 1 Since h is positive, the probablity of up spin is larger than the one of down spin. Average m aP(a) tanh( h) h :External Field a 1 Variance V a 2 2 ( a m ) P ( a ) 1 tanh ( h) a 1 Physics Fluctuomatics (Tohoku University) 6 Fundamental Probabilistic Models for Magnetic Materials P(a1 , a 2 ) exp( Ja1a 2 ) exp( Ja1a2 ) a1 1 a 2 1 a1 1 a2 1 J :Interaction J 0 eJ eJ 1 Since J is positive, (a1,a2)=(+1,+1) and (1,1) have the largest probability. Average m1 Variance a1P(a1, a2 ) 0 a1 1 a 2 1 V a1 1 +1 +1 eJ +1 1 eJ 1 +1 2 ( a m ) 1 1 P(a1, a2 ) 1 a1 1 a 2 1 Physics Fluctuomatics (Tohoku University) 7 Fundamental Probabilistic Models for Magnetic Materials a (a1 , a2 ,, a N ) 1 P(a ) exp E (a ) Z Z exp( E (a )) a E (a ) h ai J iV E:Set of All the neighbouring Pairs of Nodes ai a j {i , j }E h J (V , E ) h J E (a ) E (a ' ) P(a ) P(a ' ) 1 N a P ( a ) Problem: Compute m i N i 1 a Physics Fluctuomatics (Tohoku University) Translational Symmetry 8 Fundamental Probabilistic Models for Magnetic Materials a (a1 , a2 ,, a N ) h J ai 1 1 P(a ) exp E (a ) Z E (a ) h ai J iV h a a {i , j }E i J Translational Symmetry j Problem: Compute 1 N m lim lim ai P ( a ) h 0 N N i 1 a Spontaneous Magnetization Physics Fluctuomatics (Tohoku University) 9 Mean Field Approximation for Ising Model E a h ai J iV a a {i , j }E i j We assume that the probability for configurations satisfying (ai m)( a j m) 0 ({i, j} E ) are large. h ai a j ma j mai m 2 E (a ) (h 4 Jm)ai Jm Jm i Jm Jm iV Physics Fluctuomatics (Tohoku University) 10 Mean Field Approximation for Ising Model 1 P(a ) exp( E (a )) Pi (ai ) Z iV E (a ) (h 4 Jm)ai iV We assume that all random variables ai are independent of each other, approximately. N 1 m ai P(a ) tanh( h 4 Jm) N i 1 a m (m) Fixed Point Equation of m Physics Fluctuomatics (Tohoku University) 11 Fixed Point Equation and Iterative Method •Fixed Point Equation * * M M Physics Fluctuomatics (Tohoku University) 12 Fixed Point Equation and Iterative Method •Fixed Point Equation * y yx M M * •Iterative Method y (x) 0 M* Physics Fluctuomatics (Tohoku University) x 13 Fixed Point Equation and Iterative Method •Fixed Point Equation * y yx M M * •Iterative Method y (x) 0 M* Physics Fluctuomatics (Tohoku University) M0 x 14 Fixed Point Equation and Iterative Method •Fixed Point Equation * y yx M M * •Iterative Method M 1 M 0 M1 0 y (x) M* Physics Fluctuomatics (Tohoku University) M0 x 15 Fixed Point Equation and Iterative Method •Fixed Point Equation * y yx M M * •Iterative Method M 1 M 0 M 2 M 1 M1 0 y (x) M * M1 Physics Fluctuomatics (Tohoku University) M0 x 16 Fixed Point Equation and Iterative Method •Fixed Point Equation * y yx M M * •Iterative Method M 1 M 0 M 2 M 1 M1 M2 0 y (x) M * M1 Physics Fluctuomatics (Tohoku University) M0 x 17 Fixed Point Equation and Iterative Method •Fixed Point Equation * y yx M M * •Iterative Method M 1 M 0 M 2 M 1 M 3 M 2 M1 M2 0 y (x) M * M1 Physics Fluctuomatics (Tohoku University) M0 x 18 Marginal Probability Distribution in Mean Field Approximation Pi ( ai ) P ( a ) a1 a 2 a i 1 a i 1 aN 1 exp(( h 4 Jm) ai ) Zi m ai Pi (ai ) h Jm Jm i Jm Jm a i 1 m tanh(( h 4 J )m) Physics Fluctuomatics (Tohoku University) Jm:Mean Field 19 Advanced Mean Field Method h :Effective Field Bethe Approximation 1 Pi ( ai ) exp(( h 4 ) ai ) Zi 1 Pij ( ai , a j ) exp(( h 3 )( ai a j ) Jai a j ) Zi Pi (ai ) Pij (ai , a j ) a j 1 h arctanh (tanh( J ) tanh( h 3 )) Fixed Point Equation for J h Kikuchi Method (Cluster Variation Meth) Physics Fluctuomatics (Tohoku University) 20 Average of Ising Model on Square Grid Graph h 1 Pa exp h a i J a i a j Z {i , j }E iV lim J h J lim ai P(a ) h 0 N a (a) (b) (c) (d) Mean Field Approximation Bethe Approximation Kikuchi Method (Cluster Variation Method) Exact Solution (L. Onsager,C.N.Yang) 1/ J Physics Fluctuomatics (Tohoku University) 21 Model Representation in Statistical Physics Pr{ A1 a1 , A2 a2 ,, AN a N } P(a1 , a2 ,, a N ) Pr{ A a} P(a ) Gibbs Distribution Energy Function 1 P (a ) exp( E (a )) Z Free Energy A ( A1, A2 ,, AN ) Partition Function Z exp( E (a )) a F ln Z ln( exp( E (a ))) Physics Fluctuomatics (Tohoku University) a 22 Gibbs Distribution and Free Energy 1 Gibbs Distribution P(a ) exp( E (a )) Z Free Energy ln Z ln exp( E (a )) a Variational Principle of Free Energy Functional F[Q] under Normalization Condition for Q(a) min {F [Q] | Q(a ) 1} F [ P] ln Z a Q F [Q] E (a )Q(a ) Q(a ) ln Q(a ) a a Free Energy Functional of Trial Probability Distribution Q(a) Physics Fluctuomatics (Tohoku University) 23 Explicit Derivation of Variantional Principle for Minimization of Free Energy Functional min {F [Q] | Q(a ) 1} F [ P] ln Z Q a LQ F Q Q(a) 1 ( E (a ) ln Q(a ))Q(a ) Q(a ) 1 a a a LQ E (a ) ln Q(a ) 1 0 Q(a ) exp E ( a ) ˆ Q ( a ) P ( a ) Qˆ (a ) exp E (a ) 1 exp E (a ) a Normalization Condition Physics Fluctuomatics (Tohoku University) 24 Kullback-Leibler Divergence and Free Energy Q( a ) DQ P Q(a ) ln 0 P( a ) a Q(a ) 0, Q(a ) 1 a Q(a) P(a) DQ P 0 1 P (a ) exp( E (a )) Z D[Q | P] Q(a )E (a ) Q(a ) ln Q(a ) ln Z a a F [Q ] F [Q] ln Z arg min {F[Q] | Q(a ) 1} arg min {D[Q | P] | Q(a ) 1} Q a Q Physics Fluctuomatics (Tohoku University) a 25 Interpretation of Mean Field Approximation as Information Theory Minimization of Kullback-Leibler Divergence between Q(a ) Qi (ai ) 1 Pa exp( E (a )) Z and iV Q( a ) DQ P Q(a ) ln P( a ) a Marginal Probability Distributions Qi(ai) are determined so as to minimize D[Q|P] Qi (ai ) Q(a ) Q(a ) a \ ai a1 a2 Physics Fluctuomatics (Tohoku University) ai 1 ai 1 ai 2 aN 26 Interpretation of Mean Field Approximation as Information Theory a (a1 , a 2 , , a|V | ) 1 P(a ) exp E (a ) Z E ( a ) h ai J iV h J ai 1 a a {i , j }E i a1 a2 ai 1 ai 1 ai 2 J j Pi (ai ) P(a ) P(a ) a \ ai h Translational Symmetry aN Problem: Compute 1 1 m a P ( a ) a P ( a ) i i i | V | iV a | V | iV a 1 i Magnetization Physics Fluctuomatics (Tohoku University) 27 Kullback-Leibler Divergence in Mean Field Approximation for 1 Ising Model P(a ) exp E (a ) Z Q( a ) E ( a ) h ai J ai a j DQ P Q(a ) ln iV {i , j }E P ( a ) a Qi (ai ) Q(a ) Q(a ) Qi (ai ) a \ ai Q(a ) iV a1 a2 DQ P FMF Qi | i V ln Z ai 1 ai 1 ai 2 aN FMF [{Qi | i V }] h Qi ( ) iV 1 J ( Q ( ))( Q ( )) Q ln Q {i , j }E 1 i 1 j Physics Fluctuomatics (Tohoku University) iV 1 i i 28 Minimization of Kullback-Leibler Divergence and Mean Field Equation {Qˆ i ( )} arg min {D[Q | P] | Qi ( ) 1, i V } {Qi } Set of all the neighbouring nodes of the node i i j {i, j} E i Variation 1 ˆ ˆ Qi exp (h J Q j ( )) (i V ) Zi ji 1 ˆ Z i exp (h J Q j ( )) 1 ji 1 Fixed Point Equations for {Qi|iV} Physics Fluctuomatics (Tohoku University) 29 Orthogonal Functional Representation of Marginal Probability Distribution of Ising Model a (a1 , a2 ,, a N ) ai 1 Qi (ai ) Q(a ) Q(a ) a \ ai a1 a 2 a i 1 a i 1 mi ai Qa a 1 1 Qi (ai ) mi ai 2 2 Qi (ai ) c dai aN ai Qi (ai ) a i 1 (ai 2 1) 1 1 Qi (ai ) (c dai ) 2c c 2 Qi (ai ) 2 a i 1 a i 1 a i 1 1 1 ai Qi (ai ) ai (c dai ) 2d d 2 ai Qi (ai ) 2 mi a i 1 a i 1 Physics Fluctuomatics (Tohoku University) a i 1 30 Conventional Mean Field Equation in Ising Model E ( a ) h ai J iV ai a j h J h {i , j }E J V m1 m2 m N m Translational Symmetry 1 1 1 1 ˆ Pi (ai ) P(a ) Qi (ai ) mi ai mai 2 2 2 2 a \ ai 1 1 Qˆ i (ai ) exp (h J Qˆ j ( ))ai exp(( h 4 Jm)ai ) Zi ji 1 Zi m tanh( h 4 Jm) Fixed Point Equation N | i | 4 (i V ) 1 ai P ( a ) m N i 1 a Physics Fluctuomatics (Tohoku University) 31 Interpretation of Bethe Approximation (1) a (a1 , a 2 , , a|V | ) 1 P(a ) exp E (a ) Z Translational Symmetry h h J ai 1 E ( a ) h ai J iV a a {i , j }E i J j 1 ij (ai , a j ) P( a ) ij (ai , a j ) Z a {i , j }E Z {i , j}E 1 1 ij (ai , a j ) exp hai ha j Jai a j | j | | i | Compute Pi (ai ) P(a) P(a) a \ ai and a1 a2 ai 1 ai 1 ai 2 aN Pij (ai , a j ) P(a ) P(a ) a \{ ai , a j } a1 a2 ai 1 ai 1 ai 2 Physics Fluctuomatics (Tohoku University) a j 1 a j 1 a j 2 aN 32 Interpretation of Bethe Approximation (2) Qa DQ P Q(a ) ln 0 a Pa 1 P x ij ai , a j Z {i , j}E Free Energy KL Divergence DQ P F Q ln Z F Q Q(a ) a Qij (ai , a j ) Q( a ) a \ ai , a j ln ij ai , a j Q(a ) ln Qa {i , j }E a Q(a ) ln ij ai , a j Q(a ) ln Qa {i , j }E ai a j a \ ai , a j a Qij ai , a j ln ij ai , a j Q(a ) ln Qa {i , j }E ai aj Physics Fluctuomatics (Tohoku University) a 33 Interpretation of Bethe Approximation (3) KL Divergence F Q Free Energy DQ P F Q ln Z Q , ln , ij {i , j }E ij Q(a ) ln Qa a Qi (ai ) Q(a ) a \ai Qij , ln ij , {i , j }E 1 Pa ij ai , a j Z {i , j}E Qij (ai , a j ) Q(a ) a \ ai , a j Qi ln Qi Bethe Free iV Energy Qij , ln Qij , Qi ln Qi Q j ln Q j {i , j }E Physics Fluctuomatics (Tohoku University) 34 Interpretation of Bethe Approximation (4) DQ P FBethe Qi , Qij ln Z Q , ln , Q ln Q FBethe Qi , Qij {i , j }E ij ij iV i i arg min DQ P arg min F Qij , ln Qij , Qi ln Qi Q j ln Q j {i , j }E Q Q arg min DQ P arg min FBethe Qi , Qij Qi ,Qij Q Q , 1 Q i ij Qi Qij , Physics Fluctuomatics (Tohoku University) 35 Interpretation of Bethe Approximation (5) arg min FBethe Qi , Qij Qi Qij , , Qi Qij , 1 Qi ,Qij Lagrange Multipliers to ensure the constraints LBethe Qi , Qij FBethe Qi , Qij i ,{i , j} Qi Qij , iV ji i Qi 1 ij Qij , 1 iV {i , j}E Physics Fluctuomatics (Tohoku University) 36 Interpretation of Bethe Approximation (6) LBethe Qi , Qij FBethe Qi , Qij i ,{i , j} Qi Qij , iV ji i Qi 1 ij Qij , 1 iV {i , j}E Qij , ln ij , Qi ln Qi {i , j }E iV Q , ln Q , Q ln Q Q ln Q ij i i j j ij {i , j }E i ,{ j , j} Qi Qij , i Qi 1 ij Qij , 1 iV ji iV {i , j}E • Extremum Condition LBethe Qi , Qij 0 Qi xi LBethe Qi , Qij 0 Qij xi , x j Physics Fluctuomatics (Tohoku University) 37 Interpretation of Bethe Approximation (7) LBethe Qi , Qij 0 Qi xi LBethe Qi , Qij 0 Qij xi , x j Extremum Condition 1 Q12 a1 , a2 12 a1 , a2 exp 1,{1, 2} (a1 ) 2,{1, 2} (a2 ) Qi ai exp ( a ) i ,{i , k } i | i | 1 ki exp i ,{i , j} (ai ) M k i (ai ) ki \ j Q1 a1 1 1 M 21 a1 M 31 a1 Q12 a1 , a2 M 31 a1 M 41 a1 M 51 a1 Z1 Z12 M 41 a1 M 51 a1 12 a1 , a2 M 62 a2 M 72 a2 M 82 a2 Physics Fluctuomatics (Tohoku University) 38 Interpretation of Bethe Approximation (8) LBethe Qi , Qij 0 Qi xi M 31 4 M 41 3 1 M 31 M 21 2 4 M 41 3 1 12 M 51 M 51 5 LBethe Qi , Qij 0 Qij xi , x j 8M 2 Extremum Condition 82 M 72 7 M 62 5 6 Q1 a1 1 1 M 21 a1 M 31 a1 Q12 a1 , a2 M 31 a1 M 41 a1 M 51 a1 Z1 Z12 M 41 a1 M 51 a1 12 a1 , a2 M 62 a2 M 72 a2 M 82 a2 Physics Fluctuomatics (Tohoku University) 39 Interpretation of Bethe Approximation (9) Q1 Q12 , M 12 12 , M 31 M 41 M 51 Message Update Rule M 31 4 M 41 3 M 31 M 21 1 2 4 M 41 3 1 8M W12 M 51 M 51 5 2 82 M 72 7 M 62 5 6 Q1 a1 1 1 M 21 a1 M 31 a1 Q12 a1 , a2 M 31 a1 M 41 a1 M 51 a1 Z1 Z12 M 41 a1 M 51 a1 12 a1 , a2 M 62 a2 M 72 a2 M 82 a2 Physics Fluctuomatics (Tohoku University) 40 Interpretation of Bethe Approximation (10) 12 , M 31 M 41 M 51 M 12 12 , M 31 M 41 M 51 Message Passing Rule of Belief Propagation M 31 4 M 41 4 3 1 M 12 2 3 8 1 2 5 6 a2 7 3 M 51 5 = 4 It corresponds to Bethe approximation in the statistical mechanics. Physics Fluctuomatics (Tohoku University) 1 2 5 41 Interpretation of Bethe Approximation (11) ij , M k i 1 ki \ j M i j ij , M k i 1 1 ki \ j M i j exp i j i j arctanh (tanh( J ) tanh( h i j ki \ j k i )) Translational Symmetry arctanh (tanh( J ) tanh( h 3 )) Physics Fluctuomatics (Tohoku University) 42 Summary Statistical Physics and Information Theory Probabilistic Model of Ferromagnetism Mean Field Theory Gibbs Distribution and Free Energy Free Energy and Kullback-Leibler Divergence Interpretation of Mean Field Approximation as Information Theory Interpretation of Bethe Approximation as Information Theory Physics Fluctuomatics (Tohoku University) 43
© Copyright 2026 Paperzz