Automatic Generation of Volume Conductor Models of the Human Head for EEG Source Analysis Benjamin Lanfer WWU Münster / BESA GmbH BaCI 2015 EEG Source Analysis and Volume Conductor Models Inverse Problem Volume conductor model FEM (BEM, FDM, ...) solution of quasi-static Maxwell equations Forward Problem B. Lanfer ([email protected]) 1 / 13 Generation of Individual, Realistic Head Models B. Lanfer ([email protected]) 2 / 13 What Do We Know About the Segmentation? A-priori Knowledge I Exploiting a-priori knowledge about . . . I I . . . arrangment of head tissues . . . occurence of tissues at locations relative to (anatomical) reference surfaces B. Lanfer ([email protected]) 3 / 13 Segmentation in a Bayesian Framework I Bayesian a-posteriori probability as measure for good segmentation P (x | y) ∝ l(y | x) | {z } P (x) | {z } Likelihood A-priori Probability I Likelihood: how well does the current segmentation explain the observed image? 1 1 | −1 p l(yi | xi , λc ) = exp − (yi − µc ) Σc (yi − µc ) 2 (2π)k |Σc | B. Lanfer ([email protected]) 4 / 13 The Markov Random Field Model B. Lanfer ([email protected]) 5 / 13 The Markov Random Field Model (cont.) I I Markov Random Field (MRF) P xi | xS\{i} = P (xi | xNi ) Markovianity Each MRF is equivalent to a Gibbs Random Field 1 2 Gibbs distribution P (x) = exp − U (x) Z T B. Lanfer ([email protected]) 6 / 13 The Markov Random Field Model (cont.) I Gibbs energy function as a sum of single-site and pairwise clique potentials V1 , resp., V2 X X X V1 (i, xi ) + U (x) = V2 i, i0 , xi , xi0 + . . . i∈S i0 ∈Ni i∈S I Definition of pairwise clique potentials using pseudo transition probabilities Pxi ,xi0 (i, i0 ) V2 (i, i0 , xi , xi0 ) = − ln Pxi ,xi0 (i, i0 ) BG B. Lanfer ([email protected]) Skin / Muscle CoB CSF SCT CaB Dura GM WM 7 / 13 The Atlas-Based A-priori Probability B. Lanfer ([email protected]) 8 / 13 Atlas Generation and Projection I 20 labeled, template images from BrainWeb database1 I Averaging and normalization of local tissue histograms I Atlas: local tissue probability mass functions depending on distances to reference surfaces I Projection to individual reference surfaces Template image 1 Aubert-Broche et al., NeuroImage, 2006 Local histogram Atlas Generation and Projection I 20 labeled, template images from BrainWeb database1 I Averaging and normalization of local tissue histograms I Atlas: local tissue probability mass functions depending on distances to reference surfaces I Projection to individual reference surfaces Individual MRI and reference surfaces 1 Aubert-Broche et al., NeuroImage, 2006 Local probability mass function The Segmentation Algorithm Validation vs. Manual Raters Proposed approach ... aj ity or M te vo ... ... ... Averaging B. Lanfer ([email protected]) 11 / 13 Results Validation vs. Manual Raters B. Lanfer ([email protected]) 12 / 13 Summary and Outlook Summary I Accurate segmentation of the four most relevant tissues for EEG source analysis I Low effort enables wider application of individual, realistically shaped FEM models in EEG source analysis, tDCS simulations, . . . Outlook I Improved segmentation of the skull base and the facial skull, e.g., using templates I I Important for high-density electrode caps, temporal lobe activity Treatment of pathological anatomies (lesions, skull trepanation holes) B. Lanfer ([email protected]) 13 / 13 Thank you! WWU / IBB I PD Dr. Carsten H. Wolters I Prof. Dr. Martin Burger I Prof. Dr. Christo Pantev I Ümit Aydin I Felix Lucka I Johannes Vorwerk I Sven Wagner I Dr. Harald Kugel BESA GmbH I Dr. Michael Scherg I Dr. Tobias Scherg I Theo Scherg
© Copyright 2026 Paperzz