Automatic Generation of Volume Conductor Models of the

Automatic Generation of Volume
Conductor Models of the Human
Head for EEG Source Analysis
Benjamin Lanfer
WWU Münster / BESA GmbH
BaCI 2015
EEG Source Analysis and Volume Conductor Models
Inverse Problem
Volume conductor
model
FEM (BEM, FDM, ...) solution of
quasi-static Maxwell equations
Forward Problem
B. Lanfer ([email protected])
1 / 13
Generation of Individual, Realistic Head Models
B. Lanfer ([email protected])
2 / 13
What Do We Know About the Segmentation?
A-priori Knowledge
I
Exploiting a-priori knowledge about . . .
I
I
. . . arrangment of head tissues
. . . occurence of tissues at locations relative to (anatomical) reference
surfaces
B. Lanfer ([email protected])
3 / 13
Segmentation in a Bayesian Framework
I
Bayesian a-posteriori probability as measure for good segmentation
P (x | y) ∝ l(y | x)
| {z }
P (x)
| {z }
Likelihood A-priori Probability
I
Likelihood: how well does the current segmentation explain the
observed image?
1
1
| −1
p
l(yi | xi , λc ) =
exp − (yi − µc ) Σc (yi − µc )
2
(2π)k |Σc |
B. Lanfer ([email protected])
4 / 13
The Markov Random Field Model
B. Lanfer ([email protected])
5 / 13
The Markov Random Field Model (cont.)
I
I
Markov Random Field (MRF)
P xi | xS\{i} = P (xi | xNi )
Markovianity
Each MRF is equivalent to a Gibbs Random Field
1
2
Gibbs distribution
P (x) = exp − U (x)
Z
T
B. Lanfer ([email protected])
6 / 13
The Markov Random Field Model (cont.)
I
Gibbs energy function as a sum of single-site and pairwise clique
potentials V1 , resp., V2
X X
X
V1 (i, xi ) +
U (x) =
V2 i, i0 , xi , xi0 + . . .
i∈S i0 ∈Ni
i∈S
I
Definition of pairwise clique potentials using pseudo transition
probabilities Pxi ,xi0 (i, i0 )
V2 (i, i0 , xi , xi0 ) = − ln Pxi ,xi0 (i, i0 )
BG
B. Lanfer ([email protected])
Skin /
Muscle
CoB
CSF
SCT
CaB
Dura
GM
WM
7 / 13
The Atlas-Based A-priori Probability
B. Lanfer ([email protected])
8 / 13
Atlas Generation and Projection
I
20 labeled, template images from BrainWeb database1
I
Averaging and normalization of local tissue histograms
I
Atlas: local tissue probability mass functions depending on distances
to reference surfaces
I
Projection to individual reference surfaces
Template image
1 Aubert-Broche
et al., NeuroImage, 2006
Local histogram
Atlas Generation and Projection
I
20 labeled, template images from BrainWeb database1
I
Averaging and normalization of local tissue histograms
I
Atlas: local tissue probability mass functions depending on distances
to reference surfaces
I
Projection to individual reference surfaces
Individual MRI and reference surfaces
1 Aubert-Broche
et al., NeuroImage, 2006
Local probability mass function
The Segmentation Algorithm
Validation vs. Manual Raters
Proposed
approach
...
aj
ity
or
M
te
vo
...
...
...
Averaging
B. Lanfer ([email protected])
11 / 13
Results Validation vs. Manual Raters
B. Lanfer ([email protected])
12 / 13
Summary and Outlook
Summary
I
Accurate segmentation of the four most relevant tissues for EEG
source analysis
I
Low effort enables wider application of individual, realistically shaped
FEM models in EEG source analysis, tDCS simulations, . . .
Outlook
I
Improved segmentation of the skull base and the facial skull, e.g.,
using templates
I
I
Important for high-density electrode caps, temporal lobe activity
Treatment of pathological anatomies (lesions, skull trepanation holes)
B. Lanfer ([email protected])
13 / 13
Thank you!
WWU / IBB
I PD Dr. Carsten H. Wolters
I Prof. Dr. Martin Burger
I Prof. Dr. Christo Pantev
I Ümit Aydin
I Felix Lucka
I Johannes Vorwerk
I Sven Wagner
I Dr. Harald Kugel
BESA GmbH
I Dr. Michael Scherg
I Dr. Tobias Scherg
I Theo Scherg