Experiment Basics: Designs Psych 231: Research Methods in Psychology Exam 2 a week from today Review sessions after labs this week (DEG13) First draft of Class Experiment APA paper due in Labs this week Announcements Some specific experimental designs. Some bad (but common) designs Some good designs • • • • 1 Factor, two levels 1 Factor, multi-levels Factorial (more than 1 factor) Between & within factors Experimental designs How does anxiety level affect test performance? Random Assignment Dependent Variable Anxiety Low Test Moderate Test test performance participants 1 factor - 2 levels low moderate anxiety For more complex theories you will typically need more complex designs (more than two levels of one IV) 1 factor - more than two levels Basically you want to compare more than two conditions The statistics are a little more difficult, an ANOVA (Analysis of Variance) 1 Factor - multilevel experiments Good design example (similar to earlier ex.) How does anxiety level affect test performance? • Groups take the same test • Grp1(low anxiety group): 5 min lecture on how good grades don’t matter, just trying is good enough • Grp2 (moderate anxiety group): 5 min lecture on the importance of good grades for success • Grp3 (high anxiety group): 5 min lecture on how the students must pass this test to pass the course 1 Factor - multilevel experiments Random Assignment participants IV: Anxiety Dependent Variable Low Test Moderate Test High Test 1 factor - 3 levels low mod high 60 80 60 test performance anxiety low mod high anxiety 1 Factor - multilevel experiments Advantages Gives a better picture of the relationship (functions other than just straight lines) 2 levels test performance test performance low moderate anxiety 3 levels low mod high anxiety Generally, the more levels you have, the less you have to worry about your range of the independent variable 1 Factor - multilevel experiments Disadvantages Needs more resources (participants and/or stimuli) Requires more complex statistical analysis (ANOVA [Analysis of Variance] & follow-up pair-wise comparisons) 1 Factor - multilevel experiments The ANOVA just tells you that not all of the groups are equal. If this is your conclusion (you get a “significant ANOVA”) then you should do further tests to see where the differences are • High vs. Low • High vs. Moderate • Low vs. Moderate Pair-wise comparisons Two or more factors Some vocabulary • Factors - independent variables • Levels - the levels of your independent variables • 2 x 4 design means two independent variables, one with 2 levels and one with 4 levels • “Conditions” or “groups” is calculated by multiplying the levels, so a 2x4 design has 8 different conditions B1 B2 B3 B4 A1 A2 Factorial experiments Two or more factors Main effects - the effects of your independent variables ignoring (collapsed across) the other independent variables Interaction effects - how your independent variables affect each other • Example: 2x2 design, factors A and B B1 • Interaction: • At A1, B1 is bigger than B2 • At A2, B1 and B2 don’t differ Dependent Variable B2 A2 A1 A Everyday interaction = “it depends on …” Factorial experiments Rate how much you would want to see a new movie (1 no interest, 5 high interest): 5 Hail, Caesar! – new Cohen Brothers movie in 2016 Ask men and women – looking for an effect of gender 4.5 4 3.5 3 M en Women 2.5 2 1.5 1 Interaction effects Not much of a difference: no effect of gender Maybe the gender effect depends on whether you know who is in the movie. So you add another factor: Suppose that George Clooney or Scarlett Johansson might star. You rate the preference if he were to star and if he were not to star. 5 4.5 4 3.5 M en Women 3 2.5 2 1.5 1 No star Effect of gender depends on whether George or Scarlett stars in the movie or not This is an interaction Clooney stars Johansson stars Interaction effects A video lecture from ThePsychFiles.com podcast The complexity & number of outcomes increases: • A = main effect of factor A • B = main effect of factor B • AB = interaction of A and B • With 2 factors there are 8 basic possible patterns of results: 1) No effects at all 2) A only 3) B only 4) AB only 5) A & B 6) A & AB 7) B & AB 8) A & B & AB Results of a 2x2 factorial design A1 B1 B2 A2 Condition Condition mean mean A1B1 A2B1 Condition Condition mean mean A1B2 A2B2 A1 mean Interaction of AB What’s the effect of A at B1? What’s the effect of A at B2? B1 mean Main effect of B B2 mean A2 mean Main effect of A Marginal means 2 x 2 factorial design A1 A2 Main Effect of B B1 30 60 45 B2 30 60 45 30 60 B Dependent Variable A Main Effect of A Main effect of A Main effect of B Interaction of A x B B1 B2 A2 A1 A ✓ X X • At A1: B1 = B2 • At A2: B1 = B2 The effect of A doesn’t depend on level of B Examples of outcomes B1 A1 A2 Main Effect of B 60 60 60 B B2 30 30 45 45 30 Dependent Variable A Main Effect of A Main effect of A X Main effect of B ✓ Interaction of A x B X B1 B2 A2 A1 A • At A1: B1 - B2 = 30 • At A2: B1 - B2 = 30 The effect of A doesn’t depend on level of B Examples of outcomes B1 A1 A2 Main Effect of B 60 30 45 30 60 45 45 45 B B2 Dependent Variable A Main Effect of A Main effect of A X Main effect of B X Interaction of A x B ✓ B1 B2 A2 A1 A • At A1: B1 - B2 = +30 • At A2: B1 - B2 = -30 The effect of A does depend on level of B Examples of outcomes B1 A1 A2 Main Effect of B 30 60 45 30 30 30 30 45 B B2 Dependent Variable A Main Effect of A Main effect of A Main effect of B Interaction of A x B B1 B2 A2 A1 A ✓ ✓ ✓ • At A1: B1 - B2 = 0 • At A2: B1 - B2 = 30 The effect of A doesn’t depend on level of B Examples of outcomes Let’s add another variable: test difficulty. test performance easy medium hard low mod anxiety high Test difficulty anxiety hard medium easy low mod high 35 80 35 65 80 65 80 80 80 60 80 60 main effect of anxiety Interaction ? Yes: effect of anxiety depends on level of test difficulty Anxiety and Test Performance main effect of difficulty 50 70 80 Consider the results of our class experiment ✓ Main effect of cell phone ✓ Main effect of site type ✓ An Interaction between cell phone and site type -0.78 0.04 Factorial designs Resource: Dr. Kahn's reporting stats page Advantages Interaction effects – Can’t “see” interaction effects without factorial design – Consider the interaction effects before trying to interpret the main effects – Adding factors decreases the variability – Because you are controlling more of the variables that influence the dependent variable – This increases the statistical Power (your ability to detect an effect) of the statistical tests – Increases generalizability of the results – Because you have a situation closer to the real world (where all sorts of variables are interacting) Factorial Designs Disadvantages Experiments become very large, and unwieldy The statistical analyses get much more complex Interpretation of the results can get hard • In particular for higher-order interactions • Higher-order interactions (when you have more than two interactions, e.g., ABC). Action Movie Romantic Comedy 5 5 4.5 4.5 4 4 3.5 3.5 M en Women 3 2.5 M en Women 3 2.5 2 2 1.5 1.5 1 1 Clooney stars Johansson stars Clooney stars Johansson stars Here there is a three way interaction: gender X who stars X type of movie Factorial Designs Some specific experimental designs. Some bad (but common) designs Some good designs • • • • 1 Factor, two levels 1 Factor, multi-levels Factorial (more than 1 factor) Between & within factors Experimental designs What is the effect of presenting words in color on memory for those words? So you present lists of words for recall either in color or in black-and-white. Clock Chair Cab Clock Chair Cab Two different designs to examine this question Example Between-Groups Factor 2-levels Each of the participants is in only one level of the IV levels Clock Colored Chair words Cab participants Test BW words Clock Chair Cab Within-Groups Factor Sometimes called “repeated measures” design 2-levels, All of the participants are in both levels of the IV levels participants Colored words Clock Chair Cab Test BW words Clock Chair Cab Test Between-subjects designs Each participant participates in one and only one condition of the experiment. Within-subjects designs All participants participate in all of the conditions of the experiment. Colored words participants Test BW words participants Colored words Test BW words Test Between vs. Within Subjects Designs Between-subjects designs Each participant participates in one and only one condition of the experiment. Within-subjects designs All participants participate in all of the conditions of the experiment. Colored words participants Test BW words participants Colored words Test BW words Test Between vs. Within Subjects Designs Clock Colored words Chair Cab Advantages: participants Test BW Clock words Chair Cab Independence of groups (levels of the IV) • Harder to guess what the experiment is about without experiencing the other levels of IV • Exposure to different levels of the independent variable(s) cannot “contaminate” the dependent variable • Sometimes this is a ‘must,’ because you can’t reverse the effects of prior exposure to other levels of the IV • No order effects to worry about • Counterbalancing is not required Between subjects designs Disadvantages Clock Colored words Chair Cab participants Test BW Clock words Chair Cab Individual differences between the people in the groups • Excessive variability • Non-Equivalent groups Between subjects designs The groups are composed of different individuals participants Colored words BW words Individual differences Test The groups are composed of different individuals participants Colored words BW words Excessive variability due to individual differences Test Harder to detect the effect of the IV if there is one Individual differences NR R R The groups are composed of different individuals participants Colored words Test BW words Non-Equivalent groups (possible confound) The groups may differ not only because of the IV, but also because the groups are composed of different individuals Individual differences Strive for Equivalent groups Created equally - use the same process to create both groups Treated equally - keep the experience as similar as possible for the two groups Composed of equivalent individuals • Random assignment to groups - eliminate bias • Matching groups - match each individuals in one group to an individual in the other group on relevant characteristics Dealing with Individual Differences Group A Red Short 21yrs Blue tall 23yrs Green average 22yrs Brown tall 22yrs Group B matched matched matched matched Matching groups Red Short 21yrs Blue tall 23yrs Green average 22yrs Brown tall 22yrs Matched groups Trying to create equivalent groups Also trying to reduce some of the overall variability • Eliminating variability from the variables that you matched people on Color Height Age Between-subjects designs Each participant participates in one and only one condition of the experiment. Within-subjects designs All participants participate in all of the conditions of the experiment. Colored words participants Test participants Colored words Test BW words Test BW words Between vs. Within Subjects Designs Advantages: Don’t have to worry about individual differences • Same people in all the conditions • Variability between conditions is smaller (statistical advantage) Fewer participants are required Within subjects designs Disadvantages Range effects Order effects: • Carry-over effects • Progressive error • Counterbalancing is probably necessary to address these order effects Within subjects designs Range effects – (context effects) can cause a problem The range of values for your levels may impact performance (typically best performance in middle of range). Since all the participants get the full range of possible values, they may “adapt” their performance (the DV) to this range. Within subjects designs Carry-over effects Transfer between conditions is possible Effects may persist from one condition into another • e.g. Alcohol vs no alcohol experiment on the effects on hand-eye coordination. Hard to know how long the effects of alcohol may persist. Condition 1 Condition 2 test Order effects How long do we wait for the effects to wear off? test Progressive error Practice effects – improvement due to repeated practice Fatigue effects – performance deteriorates as participants get bored, tired, distracted Order effects Counterbalancing is probably necessary This is used to control for “order effects” • Ideally, use every possible order • (n!, e.g., AB = 2! = 2 orders; ABC = 3! = 6 orders, ABCD = 4! = 24 orders, etc). All counterbalancing assumes Symmetrical Transfer • The assumption that AB and BA have reverse effects and thus cancel out in a counterbalanced design Dealing with order effects Simple case Two conditions A & B Two counterbalanced orders: • AB • BA Colored words Test BW words Test BW words Test Colored words Test participants Counterbalancing Often it is not practical to use every possible ordering Partial counterbalancing • Latin square designs – a form of partial counterbalancing, so that each group of trials occur in each position an equal number of times Counterbalancing Example: consider four conditions Recall: ABCD = 4! = 24 possible orders 1) Unbalanced Latin square: each condition appears in each position (4 orders) Order 1 A B C D Order 2 Order 3 B C D A C D A B Order 4 D A B C Partial counterbalancing Example: consider four conditions Recall: ABCD = 4! = 24 possible orders 2) Balanced Latin square: each condition appears before and after all others (8 orders) A B C D A B D C B C D A B C A D C D A B C D B A D A B C D A C B Partial counterbalancing Mixed factorial designs Treat some factors as within-subjects (participants get all levels of that factor) and others as between-subjects (each level of this factor gets a different group of participants). This only works with factorial (multi-factor) designs Mixed factorial designs
© Copyright 2026 Paperzz