Linear Regression Introduction to Data Science Algorithms Jordan Boyd-Graber and Michael Paul SLIDES ADAPTED FROM FEDERICO Introduction to Data Science Algorithms | Boyd-Graber and Paul Linear Regression | 1 of 1 Deriving OLS • Common theme in data science: ◦ Build model ◦ Write error model ◦ Derive how to minimize error • Practice for OLS (other models next week) Introduction to Data Science Algorithms | Boyd-Graber and Paul Linear Regression | 2 of 1 Model and Objective Model yi = b0 + b1 xi + ei (1) ei = yi − b1 xi − b0 = ei (2) Error Objective `≡ X ei2 (3) i Introduction to Data Science Algorithms | Boyd-Graber and Paul Linear Regression | 3 of 1 Partial Derivatives Intercept ∂ ∂` = ∂ b0 Introduction to Data Science Algorithms | P i (yi − b0 − b1 xi )2 ∂ b0 Boyd-Graber and Paul = Linear Regression | 4 of 1 Partial Derivatives Intercept ∂ ∂` = ∂ b0 Introduction to Data Science Algorithms | P i (yi − b0 − b1 xi )2 ∂ b0 Boyd-Graber and Paul = −2 X (yi − b0 − b1 xi ) (4) i Linear Regression | 4 of 1 Partial Derivatives Intercept ∂ ∂` = ∂ b0 P i (yi − b0 − b1 xi )2 ∂ b0 = −2 X (yi − b0 − b1 xi ) (4) i Slope ∂ ∂` = ∂ b1 Introduction to Data Science Algorithms | P i (yi − b0 − b1 xi )2 ∂ b1 Boyd-Graber and Paul = Linear Regression | 4 of 1 Partial Derivatives Intercept ∂ ∂` = ∂ b0 P i (yi − b0 − b1 xi )2 ∂ b0 = −2 X (yi − b0 − b1 xi ) (4) xi (yi − b0 − b1 xi ) (5) i Slope ∂ ∂` = ∂ b1 Introduction to Data Science Algorithms | P i (yi − b0 − b1 xi )2 ∂ b1 Boyd-Graber and Paul = −2 X i Linear Regression | 4 of 1 System of Equations with Two Unknowns Solve for Intercept (6) Introduction to Data Science Algorithms | Boyd-Graber and Paul Linear Regression | 5 of 1 System of Equations with Two Unknowns Solve for Intercept 0=−2 X (yi − b0 − b1 xi ) (6) i (7) Introduction to Data Science Algorithms | Boyd-Graber and Paul Linear Regression | 5 of 1 System of Equations with Two Unknowns Solve for Intercept 0=−2 X (yi − b0 − b1 xi ) (6) i 0= X i yi − X i b0 − bi X xi (7) i (8) Multiply by − 12 , distribute sum Introduction to Data Science Algorithms | Boyd-Graber and Paul Linear Regression | 5 of 1 System of Equations with Two Unknowns Solve for Intercept 0=−2 X (yi − b0 − b1 xi ) (6) i 0= X i Nb0 = X i yi − X b0 − bi i yi − bi X xi (7) i X xi (8) i (9) b0 is constant, so Introduction to Data Science Algorithms | P i b0 = Nb0 , move to LHS Boyd-Graber and Paul Linear Regression | 5 of 1 System of Equations with Two Unknowns Solve for Intercept 0=−2 X (yi − b0 − b1 xi ) (6) i 0= X yi − X i Nb0 = i X yi − bi i X xi (7) i X xi (8) i P b0 = b0 − bi i N yi P − b1 i N xi (9) (10) Divide by N Introduction to Data Science Algorithms | Boyd-Graber and Paul Linear Regression | 5 of 1 System of Equations with Two Unknowns Solve for Intercept 0=−2 X (yi − b0 − b1 xi ) (6) i 0= X yi − X i Nb0 = i X yi − bi P i yi N b0 =ȳ − b1 x̄ Introduction to Data Science Algorithms | Boyd-Graber and Paul X xi (7) i X xi (8) i i b0 = b0 − bi P − b1 i N xi (9) (10) Linear Regression | 5 of 1 System of Equations with Two Unknowns Solve for Intercept b0 =ȳ − b1 x̄ (6) Solve for Slope (7) Introduction to Data Science Algorithms | Boyd-Graber and Paul Linear Regression | 5 of 1 System of Equations with Two Unknowns Solve for Intercept b0 =ȳ − b1 x̄ (6) Solve for Slope 0=−2 X xi (yi − b0 − b1 xi ) (7) i (8) Introduction to Data Science Algorithms | Boyd-Graber and Paul Linear Regression | 5 of 1 System of Equations with Two Unknowns Solve for Intercept b0 =ȳ − b1 x̄ (6) Solve for Slope 0=−2 X xi (yi − b0 − b1 xi ) (7) i 0= X x i y i − b0 i X i xi − X b1 xi2 (8) i (9) Multiply by − 12 , distribute sum and xi Introduction to Data Science Algorithms | Boyd-Graber and Paul Linear Regression | 5 of 1 System of Equations with Two Unknowns Solve for Intercept b0 =ȳ − b1 x̄ (6) Solve for Slope 0=−2 X xi (yi − b0 − b1 xi ) (7) i 0= X x i y i − b0 X xi2 = X i i xi − i i b1 X x i y i − b0 X X b1 xi2 (8) i xi (9) i (10) Move last term to RHS Introduction to Data Science Algorithms | Boyd-Graber and Paul Linear Regression | 5 of 1 System of Equations with Two Unknowns Solve for Intercept b0 =ȳ − b1 x̄ (6) xi (yi − b0 − b1 xi ) (7) Solve for Slope 0=−2 X i 0= X xi yi − b0 X xi2 = i b1 xi yi − b0 i X i Introduction to Data Science Algorithms X xi2 = X X b1 xi2 (8) i X xi (9) i P xi yi − i | xi − i i b1 X Boyd-Graber and Paul i N yi P − b1 i N xi X xi (10) i (11)| Linear Regression 5 of 1 Solve for Slope (continued) b1 X i Introduction to Data Science Algorithms xi2 = X P xi yi − i | Boyd-Graber and Paul i N yi P − b1 i N xi X xi i Linear Regression | 6 of 1 Solve for Slope (continued) b1 X xi2 = i b1 X P xi yi − i xi2 = X P xi yi − i i yi − b1 P N P N i X yi i i xi i xi X N P − b1 xi i ( i xi )2 N Multiplying out the last term Introduction to Data Science Algorithms | Boyd-Graber and Paul Linear Regression | 6 of 1 Solve for Slope (continued) b1 X xi2 = i b1 b1 X xi2 + b1 ( X i xi yi − xi2 = X 2 = X P xi yi − i i yi P − b1 P i xi i yi P xi i i xi X N xi i P − b1 N P xi yi − yi i N i xi ) N i P i i P X ( i xi )2 N N Move last term to LHS Introduction to Data Science Algorithms | Boyd-Graber and Paul Linear Regression | 6 of 1 Solve for Slope (continued) X b1 xi2 = i xi2 = i b1 X xi2 + b1 P ( b1 X xi2 + P ( i 2 xi ) = X X = X i P xi yi − i yi P − b1 P xi i xi i xi i xi yi − i yi P i xi X N xi i P − b1 N P ( i xi )2 N N P xi yi − yi i N i 2 xi ) N i xi yi − i N i i P i X b1 X i yi P N Factor out b1 Introduction to Data Science Algorithms | Boyd-Graber and Paul Linear Regression | 6 of 1 Solve for Slope (continued) X b1 xi2 = i xi2 = i b1 X xi2 + b1 P ( b1 X xi2 + P ( i = X X = X i Boyd-Graber and Paul − b1 yi P xi i xi i xi i xi yi − i yi P i xi X N xi i P − b1 N P ( i xi )2 N N P xi yi − xi yi − b1 = P | xi yi − i i yi P N i P Introduction to Data Science Algorithms P P N i 2 xi ) N i xi ) N i xi yi − yi i i 2 i P i X b1 X P 2 i xi + i P yi N P ( i xi )2 N i xi Linear Regression | 6 of 1 Solve for Slope (continued) P i xi yi − b1 = P P 2 i xi + ( i P yi N P i xi )2 N i xi Ratio of the sum of the crossproducts of x and y over the sum of squares for x Introduction to Data Science Algorithms | Boyd-Graber and Paul Linear Regression | 6 of 1
© Copyright 2026 Paperzz